Spaces:
Sleeping
Sleeping
refactored for langserve
Browse files- app/main.py +520 -133
app/main.py
CHANGED
@@ -1,179 +1,566 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
3 |
from langgraph.graph import StateGraph, START, END
|
4 |
-
from typing import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import io
|
6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
class GraphState(TypedDict):
|
12 |
query: str
|
13 |
context: str
|
14 |
result: str
|
15 |
-
# Add orchestrator-level parameters (addressing your open question)
|
16 |
reports_filter: str
|
17 |
sources_filter: str
|
18 |
subtype_filter: str
|
19 |
year_filter: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
def retrieve_node(state: GraphState) -> GraphState:
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
#
|
35 |
def generate_node(state: GraphState) -> GraphState:
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
#
|
45 |
workflow = StateGraph(GraphState)
|
46 |
-
|
47 |
-
# Add nodes
|
48 |
workflow.add_node("retrieve", retrieve_node)
|
49 |
workflow.add_node("generate", generate_node)
|
50 |
-
|
51 |
-
# Add edges
|
52 |
workflow.add_edge(START, "retrieve")
|
53 |
workflow.add_edge("retrieve", "generate")
|
54 |
workflow.add_edge("generate", END)
|
|
|
55 |
|
56 |
-
#
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
-
def
|
61 |
query: str,
|
62 |
reports_filter: str = "",
|
63 |
sources_filter: str = "",
|
64 |
subtype_filter: str = "",
|
65 |
year_filter: str = ""
|
66 |
) -> str:
|
67 |
-
"""
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
sources_filter (str, optional): Filter for specific data sources. Defaults to "".
|
78 |
-
subtype_filter (str, optional): Filter for document subtypes. Defaults to "".
|
79 |
-
year_filter (str, optional): Filter for specific years. Defaults to "".
|
80 |
-
|
81 |
-
Returns:
|
82 |
-
str: The generated response from the ChatFed generator service
|
83 |
-
"""
|
84 |
-
initial_state = {
|
85 |
-
"query": query,
|
86 |
-
"context": "",
|
87 |
-
"result": "",
|
88 |
-
"reports_filter": reports_filter or "",
|
89 |
-
"sources_filter": sources_filter or "",
|
90 |
-
"subtype_filter": subtype_filter or "",
|
91 |
-
"year_filter": year_filter or ""
|
92 |
-
}
|
93 |
-
final_state = graph.invoke(initial_state)
|
94 |
-
return final_state["result"]
|
95 |
-
|
96 |
-
# Simple testing interface
|
97 |
-
ui = gr.Interface(
|
98 |
-
fn=process_query,
|
99 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter query here"),
|
100 |
-
outputs="text",
|
101 |
-
flagging_mode="never"
|
102 |
-
)
|
103 |
|
104 |
-
# Add a function to generate the graph visualization
|
105 |
def get_graph_visualization():
|
106 |
-
"""Generate
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
with gr.Blocks(title="ChatFed Orchestrator") as demo:
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
with gr.Row():
|
121 |
-
# Left column - Graph visualization
|
122 |
-
with gr.Column(scale=1):
|
123 |
-
gr.Markdown("**Workflow Visualization**")
|
124 |
-
graph_display = gr.Image(
|
125 |
-
value=get_graph_visualization(),
|
126 |
-
label="LangGraph Workflow",
|
127 |
-
interactive=False,
|
128 |
-
height=300
|
129 |
-
)
|
130 |
-
|
131 |
-
# Add a refresh button for the graph
|
132 |
-
refresh_graph_btn = gr.Button("π Refresh Graph", size="sm")
|
133 |
-
refresh_graph_btn.click(
|
134 |
-
fn=get_graph_visualization,
|
135 |
-
outputs=graph_display
|
136 |
-
)
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
from gradio_client import Client
|
149 |
|
150 |
-
|
151 |
-
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
|
170 |
-
|
171 |
-
|
|
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
demo.launch(
|
175 |
server_name="0.0.0.0",
|
176 |
-
server_port=
|
177 |
-
mcp_server=True,
|
178 |
-
show_error=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
)
|
|
|
1 |
import gradio as gr
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from langserve import add_routes
|
4 |
from langgraph.graph import StateGraph, START, END
|
5 |
+
from typing import Optional, Dict, Any, List, Literal, AsyncGenerator
|
6 |
+
from typing_extensions import TypedDict
|
7 |
+
from pydantic import BaseModel
|
8 |
+
from gradio_client import Client
|
9 |
+
import uvicorn
|
10 |
+
import os
|
11 |
+
from datetime import datetime
|
12 |
+
import logging
|
13 |
+
from contextlib import asynccontextmanager
|
14 |
import io
|
15 |
from PIL import Image
|
16 |
+
import threading
|
17 |
+
import json
|
18 |
+
import asyncio
|
19 |
+
from langchain_core.runnables import RunnableLambda
|
20 |
+
from langchain_core.output_parsers import StrOutputParser
|
21 |
+
|
22 |
+
# Local imports
|
23 |
+
from utils import getconfig
|
24 |
+
|
25 |
+
config = getconfig("params.cfg")
|
26 |
|
27 |
+
RETRIEVER = config.get("retriever", "RETRIEVER")
|
28 |
+
GENERATOR = config.get("generator", "GENERATOR")
|
29 |
|
30 |
+
logging.basicConfig(
|
31 |
+
level=logging.INFO,
|
32 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
33 |
+
)
|
34 |
+
logger = logging.getLogger(__name__)
|
35 |
+
|
36 |
+
# Define langgraph state schema
|
37 |
class GraphState(TypedDict):
|
38 |
query: str
|
39 |
context: str
|
40 |
result: str
|
|
|
41 |
reports_filter: str
|
42 |
sources_filter: str
|
43 |
subtype_filter: str
|
44 |
year_filter: str
|
45 |
+
metadata: Optional[Dict[str, Any]]
|
46 |
+
|
47 |
+
# LangServe input/output schemas
|
48 |
+
class ChatFedInput(TypedDict):
|
49 |
+
query: str
|
50 |
+
reports_filter: Optional[str]
|
51 |
+
sources_filter: Optional[str]
|
52 |
+
subtype_filter: Optional[str]
|
53 |
+
year_filter: Optional[str]
|
54 |
+
session_id: Optional[str]
|
55 |
+
user_id: Optional[str]
|
56 |
+
|
57 |
+
class ChatFedOutput(TypedDict):
|
58 |
+
result: str
|
59 |
+
metadata: Dict[str, Any]
|
60 |
+
|
61 |
+
# ChatUI specific schemas
|
62 |
+
class ChatUIStreamInput(BaseModel):
|
63 |
+
text: str # ChatUI sends input as "text" field
|
64 |
+
|
65 |
+
class ChatUIStreamOutput(BaseModel):
|
66 |
+
content: str
|
67 |
+
|
68 |
+
class ChatMessage(BaseModel):
|
69 |
+
role: Literal["system", "user", "assistant"]
|
70 |
+
content: str
|
71 |
+
|
72 |
+
class ChatUIInput(BaseModel):
|
73 |
+
messages: List[ChatMessage]
|
74 |
|
75 |
+
# Retriever
|
76 |
def retrieve_node(state: GraphState) -> GraphState:
|
77 |
+
start_time = datetime.now()
|
78 |
+
logger.info(f"Starting retrieval for query: {state['query'][:100]}...")
|
79 |
+
|
80 |
+
try:
|
81 |
+
client = Client(RETRIEVER)
|
82 |
+
context = client.predict(
|
83 |
+
query=state["query"],
|
84 |
+
reports_filter=state.get("reports_filter", ""),
|
85 |
+
sources_filter=state.get("sources_filter", ""),
|
86 |
+
subtype_filter=state.get("subtype_filter", ""),
|
87 |
+
year_filter=state.get("year_filter", ""),
|
88 |
+
api_name="/retrieve"
|
89 |
+
)
|
90 |
+
|
91 |
+
duration = (datetime.now() - start_time).total_seconds()
|
92 |
+
metadata = state.get("metadata", {})
|
93 |
+
metadata.update({
|
94 |
+
"retrieval_duration_seconds": duration,
|
95 |
+
"context_length": len(context) if context else 0,
|
96 |
+
"retrieval_success": True
|
97 |
+
})
|
98 |
+
|
99 |
+
logger.info(f"Retrieval completed in {duration:.2f}s, context length: {len(context) if context else 0}")
|
100 |
+
return {"context": context, "metadata": metadata}
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
duration = (datetime.now() - start_time).total_seconds()
|
104 |
+
logger.error(f"Retrieval failed after {duration:.2f}s: {str(e)}")
|
105 |
+
|
106 |
+
metadata = state.get("metadata", {})
|
107 |
+
metadata.update({
|
108 |
+
"retrieval_duration_seconds": duration,
|
109 |
+
"retrieval_success": False,
|
110 |
+
"retrieval_error": str(e)
|
111 |
+
})
|
112 |
+
return {"context": "", "metadata": metadata}
|
113 |
|
114 |
+
# Generator
|
115 |
def generate_node(state: GraphState) -> GraphState:
|
116 |
+
start_time = datetime.now()
|
117 |
+
logger.info(f"Starting generation for query: {state['query'][:100]}...")
|
118 |
+
|
119 |
+
try:
|
120 |
+
client = Client(GENERATOR)
|
121 |
+
result = client.predict(
|
122 |
+
query=state["query"],
|
123 |
+
context=state["context"],
|
124 |
+
api_name="/generate"
|
125 |
+
)
|
126 |
+
|
127 |
+
duration = (datetime.now() - start_time).total_seconds()
|
128 |
+
metadata = state.get("metadata", {})
|
129 |
+
metadata.update({
|
130 |
+
"generation_duration_seconds": duration,
|
131 |
+
"result_length": len(result) if result else 0,
|
132 |
+
"generation_success": True
|
133 |
+
})
|
134 |
+
|
135 |
+
logger.info(f"Generation completed in {duration:.2f}s, result length: {len(result) if result else 0}")
|
136 |
+
return {"result": result, "metadata": metadata}
|
137 |
+
|
138 |
+
except Exception as e:
|
139 |
+
duration = (datetime.now() - start_time).total_seconds()
|
140 |
+
logger.error(f"Generation failed after {duration:.2f}s: {str(e)}")
|
141 |
+
|
142 |
+
metadata = state.get("metadata", {})
|
143 |
+
metadata.update({
|
144 |
+
"generation_duration_seconds": duration,
|
145 |
+
"generation_success": False,
|
146 |
+
"generation_error": str(e)
|
147 |
+
})
|
148 |
+
return {"result": f"Error generating response: {str(e)}", "metadata": metadata}
|
149 |
|
150 |
+
# Build graph
|
151 |
workflow = StateGraph(GraphState)
|
|
|
|
|
152 |
workflow.add_node("retrieve", retrieve_node)
|
153 |
workflow.add_node("generate", generate_node)
|
|
|
|
|
154 |
workflow.add_edge(START, "retrieve")
|
155 |
workflow.add_edge("retrieve", "generate")
|
156 |
workflow.add_edge("generate", END)
|
157 |
+
compiled_graph = workflow.compile()
|
158 |
|
159 |
+
# Core processing function (shared by both Gradio and LangServe)
|
160 |
+
def process_chatfed_query_core(
|
161 |
+
query: str,
|
162 |
+
reports_filter: str = "",
|
163 |
+
sources_filter: str = "",
|
164 |
+
subtype_filter: str = "",
|
165 |
+
year_filter: str = "",
|
166 |
+
session_id: Optional[str] = None,
|
167 |
+
user_id: Optional[str] = None,
|
168 |
+
return_metadata: bool = False
|
169 |
+
):
|
170 |
+
"""Core processing function used by both Gradio and LangServe interfaces."""
|
171 |
+
start_time = datetime.now()
|
172 |
+
if not session_id:
|
173 |
+
session_id = f"session_{start_time.strftime('%Y%m%d_%H%M%S')}"
|
174 |
+
|
175 |
+
logger.info(f"Processing query in session {session_id}: {query[:100]}...")
|
176 |
+
|
177 |
+
try:
|
178 |
+
initial_state = {
|
179 |
+
"query": query,
|
180 |
+
"context": "",
|
181 |
+
"result": "",
|
182 |
+
"reports_filter": reports_filter or "",
|
183 |
+
"sources_filter": sources_filter or "",
|
184 |
+
"subtype_filter": subtype_filter or "",
|
185 |
+
"year_filter": year_filter or "",
|
186 |
+
"metadata": {
|
187 |
+
"session_id": session_id,
|
188 |
+
"user_id": user_id,
|
189 |
+
"start_time": start_time.isoformat(),
|
190 |
+
"orchestrator": "hybrid_gradio_langserve"
|
191 |
+
}
|
192 |
+
}
|
193 |
+
|
194 |
+
final_state = compiled_graph.invoke(initial_state)
|
195 |
+
total_duration = (datetime.now() - start_time).total_seconds()
|
196 |
+
|
197 |
+
final_metadata = final_state.get("metadata", {})
|
198 |
+
final_metadata.update({
|
199 |
+
"total_duration_seconds": total_duration,
|
200 |
+
"end_time": datetime.now().isoformat(),
|
201 |
+
"pipeline_success": True
|
202 |
+
})
|
203 |
+
|
204 |
+
logger.info(f"Query processing completed in {total_duration:.2f}s for session {session_id}")
|
205 |
+
|
206 |
+
if return_metadata:
|
207 |
+
return {"result": final_state["result"], "metadata": final_metadata}
|
208 |
+
else:
|
209 |
+
return final_state["result"]
|
210 |
+
|
211 |
+
except Exception as e:
|
212 |
+
total_duration = (datetime.now() - start_time).total_seconds()
|
213 |
+
logger.error(f"Pipeline failed after {total_duration:.2f}s for session {session_id}: {str(e)}")
|
214 |
+
|
215 |
+
if return_metadata:
|
216 |
+
error_metadata = {
|
217 |
+
"session_id": session_id,
|
218 |
+
"total_duration_seconds": total_duration,
|
219 |
+
"pipeline_success": False,
|
220 |
+
"error": str(e)
|
221 |
+
}
|
222 |
+
return {"result": f"Error processing query: {str(e)}", "metadata": error_metadata}
|
223 |
+
else:
|
224 |
+
return f"Error processing query: {str(e)}"
|
225 |
+
|
226 |
+
# =============================================================================
|
227 |
+
# GRADIO INTERFACE (MCP ENDPOINTS)
|
228 |
+
# =============================================================================
|
229 |
|
230 |
+
# Gradio wrapper functions for MCP compatibility
|
231 |
+
def process_query_gradio(
|
232 |
query: str,
|
233 |
reports_filter: str = "",
|
234 |
sources_filter: str = "",
|
235 |
subtype_filter: str = "",
|
236 |
year_filter: str = ""
|
237 |
) -> str:
|
238 |
+
"""Gradio-compatible function that exposes MCP endpoints."""
|
239 |
+
return process_chatfed_query_core(
|
240 |
+
query=query,
|
241 |
+
reports_filter=reports_filter,
|
242 |
+
sources_filter=sources_filter,
|
243 |
+
subtype_filter=subtype_filter,
|
244 |
+
year_filter=year_filter,
|
245 |
+
session_id=f"gradio_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
246 |
+
return_metadata=False
|
247 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
|
|
249 |
def get_graph_visualization():
|
250 |
+
"""Generate graph visualization for Gradio interface."""
|
251 |
+
try:
|
252 |
+
graph_png_bytes = compiled_graph.get_graph().draw_mermaid_png()
|
253 |
+
return Image.open(io.BytesIO(graph_png_bytes))
|
254 |
+
except Exception as e:
|
255 |
+
logger.error(f"Failed to generate graph visualization: {e}")
|
256 |
+
return None
|
257 |
|
258 |
+
# Create Gradio interface
|
259 |
+
def create_gradio_interface():
|
260 |
+
with gr.Blocks(title="ChatFed Orchestrator - MCP Endpoints") as demo:
|
261 |
+
gr.Markdown("# ChatFed Orchestrator")
|
262 |
+
gr.Markdown("**MCP Server Endpoints Available** - This interface provides MCP compatibility for ChatUI integration.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
+
with gr.Row():
|
265 |
+
with gr.Column(scale=1):
|
266 |
+
gr.Markdown("**Workflow Visualization**")
|
267 |
+
graph_display = gr.Image(
|
268 |
+
value=get_graph_visualization(),
|
269 |
+
label="LangGraph Workflow",
|
270 |
+
interactive=False,
|
271 |
+
height=300
|
272 |
+
)
|
273 |
+
refresh_graph_btn = gr.Button("π Refresh Graph", size="sm")
|
274 |
+
refresh_graph_btn.click(fn=get_graph_visualization, outputs=graph_display)
|
275 |
|
276 |
+
gr.Markdown("**π MCP Integration**")
|
277 |
+
gr.Markdown("MCP endpoints are active and ready for ChatUI integration.")
|
|
|
278 |
|
279 |
+
with gr.Column(scale=2):
|
280 |
+
gr.Markdown("**MCP Endpoint Information**")
|
281 |
|
282 |
+
with gr.Accordion("MCP Usage", open=True):
|
283 |
+
gr.Markdown("""
|
284 |
+
**MCP Server Endpoint:** Available at `/gradio_api/mcp/sse`
|
285 |
+
|
286 |
+
**For ChatUI Integration:**
|
287 |
+
```python
|
288 |
+
from gradio_client import Client
|
289 |
+
|
290 |
+
# Connect to orchestrator MCP endpoint
|
291 |
+
client = Client("https://your-space.hf.space")
|
292 |
+
|
293 |
+
# Basic usage
|
294 |
+
response = client.predict(
|
295 |
+
query="your question",
|
296 |
+
api_name="/process_query_gradio"
|
297 |
+
)
|
298 |
+
|
299 |
+
# With filters
|
300 |
+
response = client.predict(
|
301 |
+
query="your question",
|
302 |
+
reports_filter="annual_reports",
|
303 |
+
sources_filter="internal",
|
304 |
+
year_filter="2024",
|
305 |
+
api_name="/process_query_gradio"
|
306 |
+
)
|
307 |
+
```
|
308 |
+
""")
|
309 |
+
|
310 |
+
with gr.Accordion("Test Interface", open=False):
|
311 |
+
# Test interface
|
312 |
+
with gr.Row():
|
313 |
+
with gr.Column():
|
314 |
+
query_input = gr.Textbox(label="Query", lines=2, placeholder="Enter your question...")
|
315 |
+
reports_filter_input = gr.Textbox(label="Reports Filter", placeholder="e.g., annual_reports")
|
316 |
+
sources_filter_input = gr.Textbox(label="Sources Filter", placeholder="e.g., internal")
|
317 |
+
subtype_filter_input = gr.Textbox(label="Subtype Filter", placeholder="e.g., financial")
|
318 |
+
year_filter_input = gr.Textbox(label="Year Filter", placeholder="e.g., 2024")
|
319 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
320 |
|
321 |
+
with gr.Column():
|
322 |
+
output = gr.Textbox(label="Response", lines=10)
|
323 |
+
|
324 |
+
submit_btn.click(
|
325 |
+
fn=process_query_gradio,
|
326 |
+
inputs=[query_input, reports_filter_input, sources_filter_input, subtype_filter_input, year_filter_input],
|
327 |
+
outputs=output
|
328 |
+
)
|
329 |
+
|
330 |
+
return demo
|
331 |
|
332 |
+
# =============================================================================
|
333 |
+
# CHATUI STREAMING ADAPTER
|
334 |
+
# =============================================================================
|
335 |
|
336 |
+
async def chatui_streaming_adapter(data: ChatUIStreamInput) -> AsyncGenerator[str, None]:
|
337 |
+
"""
|
338 |
+
Streaming adapter for ChatUI integration.
|
339 |
+
ChatUI expects streaming responses.
|
340 |
+
"""
|
341 |
+
try:
|
342 |
+
logger.info(f"ChatUI streaming request: {data.text[:100]}...")
|
343 |
+
|
344 |
+
# Process the query using your core function
|
345 |
+
result = process_chatfed_query_core(
|
346 |
+
query=data.text,
|
347 |
+
session_id=f"chatui_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
348 |
+
return_metadata=False
|
349 |
+
)
|
350 |
+
|
351 |
+
# Stream the response word by word or chunk by chunk
|
352 |
+
words = result.split()
|
353 |
+
for i, word in enumerate(words):
|
354 |
+
if i == 0:
|
355 |
+
yield word
|
356 |
+
else:
|
357 |
+
yield f" {word}"
|
358 |
+
# Small delay to simulate streaming
|
359 |
+
await asyncio.sleep(0.01)
|
360 |
+
|
361 |
+
except Exception as e:
|
362 |
+
logger.error(f"ChatUI streaming error: {str(e)}")
|
363 |
+
yield f"Error processing request: {str(e)}"
|
364 |
+
|
365 |
+
def chatui_non_streaming_adapter(data: ChatUIStreamInput):
|
366 |
+
"""
|
367 |
+
Non-streaming adapter for ChatUI (fallback).
|
368 |
+
"""
|
369 |
+
try:
|
370 |
+
logger.info(f"ChatUI non-streaming request: {data.text[:100]}...")
|
371 |
+
|
372 |
+
result = process_chatfed_query_core(
|
373 |
+
query=data.text,
|
374 |
+
session_id=f"chatui_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
375 |
+
return_metadata=False
|
376 |
+
)
|
377 |
+
return {"content": result}
|
378 |
+
except Exception as e:
|
379 |
+
logger.error(f"ChatUI adapter error: {str(e)}")
|
380 |
+
return {"content": f"Error processing request: {str(e)}"}
|
381 |
+
|
382 |
+
# =============================================================================
|
383 |
+
# LANGSERVE API (TELEMETRY)
|
384 |
+
# =============================================================================
|
385 |
+
|
386 |
+
def process_chatfed_query_langserve(input_data: ChatFedInput) -> ChatFedOutput:
|
387 |
+
"""LangServe function with full metadata return."""
|
388 |
+
result = process_chatfed_query_core(
|
389 |
+
query=input_data["query"],
|
390 |
+
reports_filter=input_data.get("reports_filter", ""),
|
391 |
+
sources_filter=input_data.get("sources_filter", ""),
|
392 |
+
subtype_filter=input_data.get("subtype_filter", ""),
|
393 |
+
year_filter=input_data.get("year_filter", ""),
|
394 |
+
session_id=input_data.get("session_id"),
|
395 |
+
user_id=input_data.get("user_id"),
|
396 |
+
return_metadata=True
|
397 |
+
)
|
398 |
+
return ChatFedOutput(result=result["result"], metadata=result["metadata"])
|
399 |
+
|
400 |
+
def chatui_adapter(data: ChatUIInput):
|
401 |
+
"""
|
402 |
+
Adapter to allow ChatUI to send full chat history.
|
403 |
+
We extract the latest user message for ChatFed.
|
404 |
+
"""
|
405 |
+
last_user_msg = next(m.content for m in reversed(data.messages) if m.role == "user")
|
406 |
+
result = process_chatfed_query_core(query=last_user_msg)
|
407 |
+
return {"result": result, "metadata": {"source": "chatfed-langserve-adapter"}}
|
408 |
+
|
409 |
+
@asynccontextmanager
|
410 |
+
async def lifespan(app: FastAPI):
|
411 |
+
logger.info("π Hybrid ChatFed Orchestrator starting up...")
|
412 |
+
logger.info("β
LangGraph compiled successfully")
|
413 |
+
logger.info("π MCP endpoints will be available via Gradio")
|
414 |
+
logger.info("π Enhanced API available via LangServe")
|
415 |
+
logger.info("π― ChatUI streaming integration enabled")
|
416 |
+
yield
|
417 |
+
logger.info("π Orchestrator shutting down...")
|
418 |
+
|
419 |
+
# Create FastAPI app with docs disabled
|
420 |
+
app = FastAPI(
|
421 |
+
title="ChatFed Orchestrator - Enhanced API",
|
422 |
+
version="1.0.0",
|
423 |
+
description="Enhanced API with observability. MCP endpoints available via Gradio interface.",
|
424 |
+
lifespan=lifespan,
|
425 |
+
docs_url=None, # Disable /docs endpoint
|
426 |
+
redoc_url=None # Disable /redoc endpoint
|
427 |
+
)
|
428 |
+
|
429 |
+
# Health check
|
430 |
+
@app.get("/health")
|
431 |
+
async def health_check():
|
432 |
+
return {
|
433 |
+
"status": "healthy",
|
434 |
+
"mcp_endpoints": "available_via_gradio",
|
435 |
+
"enhanced_api": "available_via_langserve",
|
436 |
+
"chatui_integration": "enabled"
|
437 |
+
}
|
438 |
+
|
439 |
+
# Add root endpoint
|
440 |
+
@app.get("/")
|
441 |
+
async def root():
|
442 |
+
return {
|
443 |
+
"message": "ChatFed Orchestrator API",
|
444 |
+
"version": "1.0.0",
|
445 |
+
"endpoints": {
|
446 |
+
"health": "/health",
|
447 |
+
"chatfed": "/chatfed",
|
448 |
+
"chatfed-chatui": "/chatfed-chatui",
|
449 |
+
"chatfed-ui-stream": "/chatfed-ui-stream", # New for ChatUI streaming
|
450 |
+
"chatfed-ui": "/chatfed-ui", # New fallback
|
451 |
+
"process_query": "/process_query"
|
452 |
+
},
|
453 |
+
"gradio_interface": "http://localhost:7861/",
|
454 |
+
"mcp_endpoints": "http://localhost:7861/gradio_api/mcp/sse",
|
455 |
+
"note": "LangServe telemetry enabled - ChatUI integration available via /chatfed-ui-stream"
|
456 |
+
}
|
457 |
+
|
458 |
+
# =============================================================================
|
459 |
+
# ADD LANGSERVE ROUTES
|
460 |
+
# =============================================================================
|
461 |
+
|
462 |
+
# Convert functions to Runnables
|
463 |
+
process_chatfed_query_runnable = RunnableLambda(process_chatfed_query_langserve)
|
464 |
+
chatui_adapter_runnable = RunnableLambda(chatui_adapter)
|
465 |
+
chatui_streaming_runnable = RunnableLambda(chatui_streaming_adapter)
|
466 |
+
chatui_non_streaming_runnable = RunnableLambda(chatui_non_streaming_adapter)
|
467 |
+
|
468 |
+
# Add routes with explicit input/output schemas
|
469 |
+
add_routes(
|
470 |
+
app,
|
471 |
+
process_chatfed_query_runnable,
|
472 |
+
path="/chatfed",
|
473 |
+
input_type=ChatFedInput,
|
474 |
+
output_type=ChatFedOutput
|
475 |
+
)
|
476 |
+
|
477 |
+
# Original ChatUI-compatible LangServe route
|
478 |
+
add_routes(
|
479 |
+
app,
|
480 |
+
chatui_adapter_runnable,
|
481 |
+
path="/chatfed-chatui",
|
482 |
+
input_type=ChatUIInput
|
483 |
+
)
|
484 |
+
|
485 |
+
# NEW: ChatUI streaming route (matches your ChatUI config)
|
486 |
+
add_routes(
|
487 |
+
app,
|
488 |
+
chatui_streaming_runnable,
|
489 |
+
path="/chatfed-ui-stream",
|
490 |
+
input_type=ChatUIStreamInput,
|
491 |
+
enable_feedback_endpoint=True,
|
492 |
+
enable_public_trace_link_endpoint=True,
|
493 |
+
)
|
494 |
+
|
495 |
+
# NEW: ChatUI non-streaming fallback route
|
496 |
+
add_routes(
|
497 |
+
app,
|
498 |
+
chatui_non_streaming_runnable,
|
499 |
+
path="/chatfed-ui",
|
500 |
+
input_type=ChatUIStreamInput,
|
501 |
+
output_type=ChatUIStreamOutput,
|
502 |
+
enable_feedback_endpoint=True,
|
503 |
+
enable_public_trace_link_endpoint=True,
|
504 |
+
)
|
505 |
+
|
506 |
+
# Backward compatibility endpoint
|
507 |
+
@app.post("/process_query")
|
508 |
+
async def process_query_endpoint(
|
509 |
+
query: str,
|
510 |
+
reports_filter: str = "",
|
511 |
+
sources_filter: str = "",
|
512 |
+
subtype_filter: str = "",
|
513 |
+
year_filter: str = "",
|
514 |
+
session_id: Optional[str] = None,
|
515 |
+
user_id: Optional[str] = None
|
516 |
+
):
|
517 |
+
"""Backward compatibility endpoint."""
|
518 |
+
return process_chatfed_query_core(
|
519 |
+
query=query,
|
520 |
+
reports_filter=reports_filter,
|
521 |
+
sources_filter=sources_filter,
|
522 |
+
subtype_filter=subtype_filter,
|
523 |
+
year_filter=year_filter,
|
524 |
+
session_id=session_id,
|
525 |
+
user_id=user_id,
|
526 |
+
return_metadata=False
|
527 |
+
)
|
528 |
+
|
529 |
+
# =============================================================================
|
530 |
+
# MAIN APPLICATION LAUNCHER
|
531 |
+
# =============================================================================
|
532 |
+
|
533 |
+
def run_gradio_server():
|
534 |
+
"""Run Gradio server in a separate thread for MCP endpoints."""
|
535 |
+
demo = create_gradio_interface()
|
536 |
demo.launch(
|
537 |
server_name="0.0.0.0",
|
538 |
+
server_port=7861, # Different port from FastAPI
|
539 |
+
mcp_server=True,
|
540 |
+
show_error=True,
|
541 |
+
share=False,
|
542 |
+
quiet=True
|
543 |
+
)
|
544 |
+
|
545 |
+
if __name__ == "__main__":
|
546 |
+
# Start Gradio server in background thread for MCP endpoints
|
547 |
+
gradio_thread = threading.Thread(target=run_gradio_server, daemon=True)
|
548 |
+
gradio_thread.start()
|
549 |
+
logger.info("π Gradio MCP server started on port 7861")
|
550 |
+
|
551 |
+
# Start FastAPI server for enhanced API
|
552 |
+
host = os.getenv("HOST", "0.0.0.0")
|
553 |
+
port = int(os.getenv("PORT", "7860"))
|
554 |
+
|
555 |
+
logger.info(f"π Starting FastAPI server on {host}:{port}")
|
556 |
+
logger.info("π Enhanced API with LangServe telemetry available")
|
557 |
+
logger.info("π MCP endpoints available via Gradio on port 7861")
|
558 |
+
logger.info("π― ChatUI streaming integration ready at /chatfed-ui-stream")
|
559 |
+
|
560 |
+
uvicorn.run(
|
561 |
+
app,
|
562 |
+
host=host,
|
563 |
+
port=port,
|
564 |
+
log_level="info",
|
565 |
+
access_log=True
|
566 |
)
|