Spaces:
Runtime error
Runtime error
reranker integration (optional)
Browse files- app/main.py +5 -3
- app/retriever.py +108 -22
- params.cfg +13 -5
- requirements.txt +2 -1
app/main.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from .retriever import
|
3 |
|
4 |
# Initialize vector store at startup
|
5 |
print("Initializing vector store connection...")
|
@@ -40,7 +40,8 @@ def retrieve_mcp(
|
|
40 |
year = [y.strip() for y in year_filter.split(",") if y.strip()] if year_filter else None
|
41 |
|
42 |
# Call retriever function and return raw results
|
43 |
-
results =
|
|
|
44 |
query=query,
|
45 |
reports=reports,
|
46 |
sources=sources,
|
@@ -64,7 +65,8 @@ def retrieve_ui(query, reports_filter="", sources_filter="", subtype_filter="",
|
|
64 |
year = [y.strip() for y in year_filter.split(",") if y.strip()] if year_filter else None
|
65 |
|
66 |
# Call retriever function
|
67 |
-
results =
|
|
|
68 |
query=query,
|
69 |
reports=reports,
|
70 |
sources=sources,
|
|
|
1 |
import gradio as gr
|
2 |
+
from .retriever import get_context, get_vectorstore
|
3 |
|
4 |
# Initialize vector store at startup
|
5 |
print("Initializing vector store connection...")
|
|
|
40 |
year = [y.strip() for y in year_filter.split(",") if y.strip()] if year_filter else None
|
41 |
|
42 |
# Call retriever function and return raw results
|
43 |
+
results = get_context(
|
44 |
+
vectorstore=vectorstore,
|
45 |
query=query,
|
46 |
reports=reports,
|
47 |
sources=sources,
|
|
|
65 |
year = [y.strip() for y in year_filter.split(",") if y.strip()] if year_filter else None
|
66 |
|
67 |
# Call retriever function
|
68 |
+
results = get_context(
|
69 |
+
vectorstore=vectorstore,
|
70 |
query=query,
|
71 |
reports=reports,
|
72 |
sources=sources,
|
app/retriever.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
from typing import List, Dict, Any, Optional
|
2 |
from qdrant_client.http import models as rest
|
3 |
from langchain.schema import Document
|
|
|
|
|
4 |
from .utils import getconfig
|
5 |
from .vectorstore_interface import create_vectorstore, VectorStoreInterface
|
6 |
import logging
|
@@ -12,18 +14,39 @@ config = getconfig("params.cfg")
|
|
12 |
RETRIEVER_TOP_K = int(config.get("retriever", "TOP_K"))
|
13 |
SCORE_THRESHOLD = float(config.get("retriever", "SCORE_THRESHOLD"))
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def get_vectorstore() -> VectorStoreInterface:
|
21 |
"""
|
22 |
-
|
23 |
|
24 |
Returns:
|
25 |
VectorStoreInterface instance
|
26 |
"""
|
|
|
|
|
|
|
27 |
return vectorstore
|
28 |
|
29 |
def create_filter(
|
@@ -89,48 +112,111 @@ def create_filter(
|
|
89 |
return rest.Filter(must=conditions)
|
90 |
return None
|
91 |
|
92 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
query: str,
|
94 |
reports: List[str] = None,
|
95 |
sources: str = None,
|
96 |
subtype: str = None,
|
97 |
-
year: List[str] = None
|
98 |
-
top_k: int = None
|
99 |
) -> List[Dict[str, Any]]:
|
100 |
"""
|
101 |
-
Retrieve semantically similar documents from the vector database.
|
102 |
|
103 |
Args:
|
|
|
104 |
query: The search query
|
105 |
-
vectorstore: Pre-initialized vector store instance
|
106 |
reports: List of specific report filenames to search within
|
107 |
sources: Source type to filter by
|
108 |
subtype: Document subtype to filter by
|
109 |
year: List of years to filter by
|
110 |
-
top_k: Number of results to return (defaults to config value)
|
111 |
|
112 |
Returns:
|
113 |
-
List of dictionaries with '
|
114 |
"""
|
115 |
try:
|
116 |
-
# Use
|
117 |
-
|
|
|
|
|
|
|
118 |
|
119 |
-
# For Hugging Face Spaces, we pass the model name from config
|
120 |
search_kwargs = {
|
121 |
"model_name": config.get("embeddings", "MODEL_NAME")
|
122 |
}
|
123 |
|
124 |
-
#
|
125 |
-
|
126 |
-
if any([reports, sources, subtype, year]):
|
127 |
-
logging.warning("Filtering not supported for Hugging Face Spaces API")
|
128 |
-
|
129 |
-
# Perform retrieval
|
130 |
-
retrieved_docs = vectorstore.search(query, k, **search_kwargs)
|
131 |
|
132 |
logging.info(f"Retrieved {len(retrieved_docs)} documents for query: {query[:50]}...")
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
return retrieved_docs
|
135 |
|
136 |
except Exception as e:
|
|
|
1 |
from typing import List, Dict, Any, Optional
|
2 |
from qdrant_client.http import models as rest
|
3 |
from langchain.schema import Document
|
4 |
+
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
5 |
+
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
6 |
from .utils import getconfig
|
7 |
from .vectorstore_interface import create_vectorstore, VectorStoreInterface
|
8 |
import logging
|
|
|
14 |
RETRIEVER_TOP_K = int(config.get("retriever", "TOP_K"))
|
15 |
SCORE_THRESHOLD = float(config.get("retriever", "SCORE_THRESHOLD"))
|
16 |
|
17 |
+
# Reranker settings from config
|
18 |
+
RERANKER_ENABLED = config.getboolean("reranker", "ENABLED", fallback=False)
|
19 |
+
RERANKER_MODEL = config.get("reranker", "MODEL_NAME", fallback="cross-encoder/ms-marco-MiniLM-L-6-v2")
|
20 |
+
RERANKER_TOP_K = int(config.get("reranker", "TOP_K", fallback=5))
|
21 |
+
RERANKER_TOP_K_SCALE_FACTOR = int(config.get("reranker", "TOP_K_SCALE_FACTOR", fallback=2))
|
22 |
+
|
23 |
+
# # Initialize vector store connection at module import time
|
24 |
+
# logging.info("Initializing vector store connection...")
|
25 |
+
# vectorstore = create_vectorstore(config)
|
26 |
+
# logging.info("Vector store connection initialized successfully")
|
27 |
+
|
28 |
+
# Initialize reranker if enabled
|
29 |
+
reranker = None
|
30 |
+
if RERANKER_ENABLED:
|
31 |
+
try:
|
32 |
+
logging.info(f"Initializing reranker with model: {RERANKER_MODEL}")
|
33 |
+
model = HuggingFaceCrossEncoder(model_name=RERANKER_MODEL)
|
34 |
+
reranker = CrossEncoderReranker(model=model, top_n=RERANKER_TOP_K)
|
35 |
+
logging.info("Reranker initialized successfully")
|
36 |
+
except Exception as e:
|
37 |
+
logging.error(f"Failed to initialize reranker: {str(e)}")
|
38 |
+
reranker = None
|
39 |
|
40 |
def get_vectorstore() -> VectorStoreInterface:
|
41 |
"""
|
42 |
+
Create and return a vector store connection.
|
43 |
|
44 |
Returns:
|
45 |
VectorStoreInterface instance
|
46 |
"""
|
47 |
+
logging.info("Initializing vector store connection...")
|
48 |
+
vectorstore = create_vectorstore(config)
|
49 |
+
logging.info("Vector store connection initialized successfully")
|
50 |
return vectorstore
|
51 |
|
52 |
def create_filter(
|
|
|
112 |
return rest.Filter(must=conditions)
|
113 |
return None
|
114 |
|
115 |
+
def rerank_documents(query: str, documents: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
116 |
+
"""
|
117 |
+
Rerank documents using cross-encoder (specify in params.cfg)
|
118 |
+
|
119 |
+
Args:
|
120 |
+
query: The search query
|
121 |
+
documents: List of documents to rerank
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
Reranked list of documents in original format
|
125 |
+
"""
|
126 |
+
if not reranker or not documents:
|
127 |
+
return documents
|
128 |
+
|
129 |
+
try:
|
130 |
+
logging.info(f"Starting reranking of {len(documents)} documents")
|
131 |
+
|
132 |
+
# Convert to LangChain Document format using correct keys (need to review this later for portability)
|
133 |
+
langchain_docs = []
|
134 |
+
for doc in documents:
|
135 |
+
# Use correct keys from the data storage test module
|
136 |
+
content = doc.get('answer', '')
|
137 |
+
metadata = doc.get('answer_metadata', {})
|
138 |
+
|
139 |
+
if not content:
|
140 |
+
logging.warning(f"Document missing content: {doc}")
|
141 |
+
continue
|
142 |
+
|
143 |
+
langchain_doc = Document(
|
144 |
+
page_content=content,
|
145 |
+
metadata=metadata
|
146 |
+
)
|
147 |
+
langchain_docs.append(langchain_doc)
|
148 |
+
|
149 |
+
if not langchain_docs:
|
150 |
+
logging.warning("No valid documents found for reranking")
|
151 |
+
return documents
|
152 |
+
|
153 |
+
# Rerank documents
|
154 |
+
logging.info(f"Reranking {len(langchain_docs)} documents")
|
155 |
+
reranked_docs = reranker.compress_documents(langchain_docs, query)
|
156 |
+
|
157 |
+
# Convert back to original format
|
158 |
+
result = []
|
159 |
+
for doc in reranked_docs:
|
160 |
+
result.append({
|
161 |
+
'answer': doc.page_content,
|
162 |
+
'answer_metadata': doc.metadata,
|
163 |
+
})
|
164 |
+
|
165 |
+
logging.info(f"Successfully reranked {len(documents)} documents to top {len(result)}")
|
166 |
+
return result
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
logging.error(f"Error during reranking: {str(e)}")
|
170 |
+
# Return original documents if reranking fails
|
171 |
+
return documents
|
172 |
+
|
173 |
+
def get_context(
|
174 |
+
vectorstore: VectorStoreInterface,
|
175 |
query: str,
|
176 |
reports: List[str] = None,
|
177 |
sources: str = None,
|
178 |
subtype: str = None,
|
179 |
+
year: List[str] = None
|
|
|
180 |
) -> List[Dict[str, Any]]:
|
181 |
"""
|
182 |
+
Retrieve semantically similar documents from the vector database with optional reranking.
|
183 |
|
184 |
Args:
|
185 |
+
vectorstore: The vector store interface to search
|
186 |
query: The search query
|
|
|
187 |
reports: List of specific report filenames to search within
|
188 |
sources: Source type to filter by
|
189 |
subtype: Document subtype to filter by
|
190 |
year: List of years to filter by
|
|
|
191 |
|
192 |
Returns:
|
193 |
+
List of dictionaries with 'answer', 'answer_metadata', and 'score' keys
|
194 |
"""
|
195 |
try:
|
196 |
+
# Use a higher k for initial retrieval if reranking is enabled (more candidates docs)
|
197 |
+
top_k = RETRIEVER_TOP_K
|
198 |
+
if RERANKER_ENABLED and reranker:
|
199 |
+
top_k = top_k * RERANKER_TOP_K_SCALE_FACTOR
|
200 |
+
logging.info(f"Reranking enabled, retrieving {top_k} candidates")
|
201 |
|
|
|
202 |
search_kwargs = {
|
203 |
"model_name": config.get("embeddings", "MODEL_NAME")
|
204 |
}
|
205 |
|
206 |
+
# Perform initial retrieval
|
207 |
+
retrieved_docs = vectorstore.search(query, top_k, **search_kwargs)
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
logging.info(f"Retrieved {len(retrieved_docs)} documents for query: {query[:50]}...")
|
210 |
|
211 |
+
# Apply reranking if enabled
|
212 |
+
if RERANKER_ENABLED and reranker and retrieved_docs:
|
213 |
+
logging.info("Applying reranking...")
|
214 |
+
retrieved_docs = rerank_documents(query, retrieved_docs)
|
215 |
+
|
216 |
+
# Trim to final desired k
|
217 |
+
retrieved_docs = retrieved_docs[:RERANKER_TOP_K]
|
218 |
+
|
219 |
+
logging.info(f"Returning {len(retrieved_docs)} final documents")
|
220 |
return retrieved_docs
|
221 |
|
222 |
except Exception as e:
|
params.cfg
CHANGED
@@ -1,7 +1,3 @@
|
|
1 |
-
[retriever]
|
2 |
-
TOP_K = 10
|
3 |
-
SCORE_THRESHOLD = 0.6
|
4 |
-
|
5 |
[vectorstore]
|
6 |
TYPE = huggingface_spaces
|
7 |
SPACE_URL = GIZ/audit_data
|
@@ -15,4 +11,16 @@ COLLECTION_NAME = docling
|
|
15 |
|
16 |
[embeddings]
|
17 |
MODEL_NAME = BAAI/bge-m3
|
18 |
-
# DEVICE = cpu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
[vectorstore]
|
2 |
TYPE = huggingface_spaces
|
3 |
SPACE_URL = GIZ/audit_data
|
|
|
11 |
|
12 |
[embeddings]
|
13 |
MODEL_NAME = BAAI/bge-m3
|
14 |
+
# DEVICE = cpu
|
15 |
+
|
16 |
+
[retriever]
|
17 |
+
TOP_K = 10
|
18 |
+
SCORE_THRESHOLD = 0.6
|
19 |
+
|
20 |
+
[reranker]
|
21 |
+
MODEL_NAME = cross-encoder/ms-marco-MiniLM-L-6-v2
|
22 |
+
TOP_K = 5
|
23 |
+
ENABLED = true
|
24 |
+
# use this to scale out the total docs retrieved prior to reranking (i.e. retriever top_k * TOP_K_SCALE_FACTOR)
|
25 |
+
TOP_K_SCALE_FACTOR = 2
|
26 |
+
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ langchain-community
|
|
4 |
qdrant-client
|
5 |
sentence-transformers
|
6 |
gradio_client>=0.10.0
|
7 |
-
huggingface_hub>=0.20.0
|
|
|
|
4 |
qdrant-client
|
5 |
sentence-transformers
|
6 |
gradio_client>=0.10.0
|
7 |
+
huggingface_hub>=0.20.0
|
8 |
+
torch
|