File size: 6,478 Bytes
031e5e2
 
 
 
 
 
 
 
 
 
6d737a4
031e5e2
 
 
 
 
 
 
 
 
 
 
 
 
6d737a4
 
031e5e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d737a4
 
 
 
 
 
 
 
 
031e5e2
 
 
 
6d737a4
 
 
 
 
 
 
 
031e5e2
6d737a4
031e5e2
6d737a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f06a72
 
 
 
 
 
6d737a4
 
dc55918
 
acff600
 
 
dc55918
 
 
 
 
acff600
dc55918
 
 
 
 
 
 
 
 
 
 
 
acff600
dc55918
 
 
6d737a4
d30004c
d7ac6f9
8f06a72
144d528
 
 
 
 
 
 
 
acff600
6d737a4
 
 
 
d7ac6f9
8f06a72
144d528
8f06a72
 
6d737a4
8f06a72
 
6d737a4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# set path
import glob, os, sys; 
sys.path.append('../utils')

#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from utils.target_classifier import load_targetClassifier, target_classification 
import logging
logger = logging.getLogger(__name__)
from utils.config import get_classifier_params
from io import BytesIO
import xlsxwriter
import plotly.express as px

# Declare all the necessary variables
classifier_identifier = 'target'
params  = get_classifier_params(classifier_identifier)

## Labels dictionary ###
_lab_dict = {
            'NEGATIVE':'NO TARGET INFO',
            'TARGET':'TARGET',
            }

@st.cache_data
def to_excel(df):
    len_df = len(df)
    output = BytesIO()
    writer = pd.ExcelWriter(output, engine='xlsxwriter')
    df.to_excel(writer, index=False, sheet_name='Sheet1')
    workbook = writer.book
    worksheet = writer.sheets['Sheet1']
    worksheet.data_validation('E2:E{}'.format(len_df), 
                              {'validate': 'list', 
                               'source': ['No', 'Yes', 'Discard']})
    writer.save()
    processed_data = output.getvalue()
    return processed_data

def app():

    #### APP INFO #####
    #     st.write(
    #         """     
    #         The **Target Extraction** app is an easy-to-use interface built \
    #             in Streamlit for analyzing policy documents for \
    #              Classification of the paragraphs/texts in the document *If it \
    #             contains any Economy-Wide Targets related information* - \
    #             developed by GIZ Data Service Center, GFA, IKI Tracs, \
    #              SV Klima and SPA. \n
    #         """)


    ### Main app code ###
    with st.container():
        if 'key0' in st.session_state:
            df = st.session_state.key0

            #load Classifier
            classifier = load_targetClassifier(classifier_name=params['model_name'])
            st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
            if len(df) > 100:
                warning_msg = ": This might take sometime, please sit back and relax."
            else:
                warning_msg = ""
                
            df  = target_classification(haystack_doc=df,
                                    threshold= params['threshold'])
            st.session_state.key1 = df

          # # excel part
            # temp = df[df['Relevancy']>threshold]
            
            # df['Validation'] =  'No'
            # df_xlsx = to_excel(df)
            # st.download_button(label='πŸ“₯ Download Current Result',
            #                 data=df_xlsx ,
            #                 file_name= 'file_target.xlsx')
              
def target_display():
    if  'key1' in st.session_state:
        df = st.session_state.key1
        hits  = df[df['Target Label'] == 'TARGET']
        _lab_dict = {
                      'LABEL_0':'NEGATIVE',
                      'LABEL_1':'NOT GHG',
                      'LABEL_2':'GHG',
                      }
        hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i])
        range_val = min(5,len(hits))
        if range_val !=0:
            count_target = sum(hits['Target Label'] == 'TARGET')
            count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
            count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
            count_economy = sum([True if 'Economy-wide' in x else False 
                              for x in hits['Sector Label']])
            
            # count_df = df['Target Label'].value_counts()
            # count_df = count_df.rename('count')
            # count_df = count_df.rename_axis('Target Label').reset_index()
            # count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])

            # fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200)
            c1, c2 = st.columns([1,1])
            with c1:
                st.write('**Target Paragraphs**: `{}`'.format(count_target))
                st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))

                # st.plotly_chart(fig,use_container_width= True)
            
            # count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
            # count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
            # count_economy = sum([True if 'Economy-wide' in x else False 
            #                   for x in hits['Sector Label']])
            with c2:
                st.write('**GHG Related Paragraphs**: `{}`'.format(count_ghg))
                st.write('**Economy-wide Related Paragraphs**: `{}`'.format(count_economy))
                
            hits = hits.sort_values(by=['Relevancy'], ascending=False)
            netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
            if not netzerohit.empty:
                netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
                st.markdown("###### Netzero paragraph ######")
                st.write('** Text `page {}`: {}'.format(netzerohit.iloc[i]['page'],
                                netzerohit.iloc[i]['text'].replace("\n", " ")))                        
                st.write("")
            else:
                st.info("πŸ€” No Netzero paragraph found")

            # st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
            st.markdown("###### Top few Target Classified paragraph/text results ######")
            range_val = min(5,len(hits))
            for i in range(range_val):
                # the page number reflects the page that contains the main paragraph 
                # according to split limit, the overlapping part can be on a separate page
                st.write('**Result {}** (Relevancy Score: {:.2f}): `page {}`, `Sector: {}`,\
                            `GHG: {}`, `Adapt-Mitig :{}`'\
                    .format(i+1,hits.iloc[i]['Relevancy'],
                            hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
                            hits.iloc[i]['GHG Label'],hits.iloc[i]['Adapt-Mitig Label']))                        
                st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
            hits = hits.reset_index(drop =True)
            st.write(hits)
        else:
            st.info("πŸ€” No Targets found")