File size: 11,741 Bytes
0e3ebc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# set path
import glob, os, sys; 
sys.path.append('../utils')

#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from utils.policyaction_classifier import load_policyactionClassifier, policyaction_classification
import logging
logger = logging.getLogger(__name__)
from utils.config import get_classifier_params
from utils.preprocessing import paraLengthCheck
from io import BytesIO
import xlsxwriter
import plotly.express as px


# Declare all the necessary variables
classifier_identifier = 'policyaction'
params  = get_classifier_params(classifier_identifier)

@st.cache_data
def to_excel(df):
    df['Target Validation'] = 'No'
    df['Netzero Validation'] = 'No'
    df['GHG Validation'] = 'No'
    df['Adapt-Mitig Validation'] = 'No'
    df['Sector'] = 'No'
    len_df = len(df)
    output = BytesIO()
    writer = pd.ExcelWriter(output, engine='xlsxwriter')
    df.to_excel(writer, index=False, sheet_name='Sheet1')
    workbook = writer.book
    worksheet = writer.sheets['Sheet1']
    worksheet.data_validation('L2:L{}'.format(len_df), 
                              {'validate': 'list', 
                               'source': ['No', 'Yes', 'Discard']})
    worksheet.data_validation('M2:L{}'.format(len_df), 
                              {'validate': 'list', 
                               'source': ['No', 'Yes', 'Discard']})
    worksheet.data_validation('N2:L{}'.format(len_df), 
                              {'validate': 'list', 
                               'source': ['No', 'Yes', 'Discard']})
    worksheet.data_validation('O2:L{}'.format(len_df), 
                              {'validate': 'list', 
                               'source': ['No', 'Yes', 'Discard']})
    worksheet.data_validation('P2:L{}'.format(len_df), 
                              {'validate': 'list', 
                               'source': ['No', 'Yes', 'Discard']})                                                                                                         
    writer.save()
    processed_data = output.getvalue()
    return processed_data

def app():

    ### Main app code ###
    with st.container():
                   
            if 'key1' in st.session_state:
                df = st.session_state.key1
                classifier = load_policyactionClassifier(classifier_name=params['model_name'])
                st.session_state['{}_classifier'.format(classifier_identifier)] = classifier

                if sum(df['Target Label'] == 'TARGET') > 100:
                    warning_msg = ": This might take sometime, please sit back and relax."
                else:
                    warning_msg = ""
                    
                df = policyaction_classification(haystack_doc=df,
                                            threshold= params['threshold'])

                st.session_state.key1 = df



def action_display():
    if  'key1' in st.session_state:
        df = st.session_state.key1
                
        
        df['Action_check']  = df['Policy-Action Label'].apply(lambda x: True if 'Action' in x else False)
        hits  = df[df['Action_check'] == True]
        # hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i])
        range_val = min(5,len(hits))
        if range_val !=0:
            count_action = len(hits)
            #count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
            #count_ghg = sum(hits['GHG Label'] == 'GHG')
            #count_economy = sum([True if 'Economy-wide' in x else False 
            #                  for x in hits['Sector Label']])
            
            # count_df = df['Target Label'].value_counts()
            # count_df = count_df.rename('count')
            # count_df = count_df.rename_axis('Target Label').reset_index()
            # count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])

            # fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200)
        #    c1, c2 = st.columns([1,1])
        #    with c1:
        #        st.write('**Target Paragraphs**: `{}`'.format(count_target))
        #        st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
#
 #               # st.plotly_chart(fig,use_container_width= True)
  #          
            # count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
            # count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
            # count_economy = sum([True if 'Economy-wide' in x else False 
            #                   for x in hits['Sector Label']])
     #       with c2:
      #          st.write('**GHG Related Paragraphs**: `{}`'.format(count_ghg))
       #         st.write('**Economy-wide Related Paragraphs**: `{}`'.format(count_economy))
        #    st.write('-------------------')    
    #        hits = hits.sort_values(by=['Relevancy'], ascending=False)
     #       netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
      #      if not netzerohit.empty:
       #         netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
        #        # st.write('-------------------')
                # st.markdown("###### Netzero paragraph ######")
      #          st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
      #                          netzerohit.iloc[0]['text'].replace("\n", " ")))                        
       #         st.write("")
        #    else:
         #       st.info("πŸ€” No Netzero paragraph found")

            # st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
           # st.write('-------------------')
            st.write("")
            st.markdown("###### Top few Action Classified paragraph/text results from list of {} classified paragraphs ######".format(count_action))
            st.markdown("""<hr style="height:10px;border:none;color:#097969;background-color:#097969;" /> """, unsafe_allow_html=True)
            range_val = min(5,len(hits))
            for i in range(range_val):
                # the page number reflects the page that contains the main paragraph 
                # according to split limit, the overlapping part can be on a separate page
                st.write('**Result {}** : `page {}`, `Sector: {}`,\
                            `Indicators: {}`, `Adapt-Mitig :{}`'\
                    .format(i+1,
                            hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
                            hits.iloc[i]['Indicator Label'],hits.iloc[i]['Adapt-Mitig Label']))                        
                st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
            hits = hits.reset_index(drop =True)
            st.write('----------------')
            st.write('Explore the data')
            st.write(hits)
            df.drop(columns = ['Action_check'],inplace=True)
            df_xlsx = to_excel(df)
            
            with st.sidebar:
                st.write('-------------')
                st.download_button(label='πŸ“₯ Download Result',
                            data=df_xlsx ,
                            file_name= 'cpu_analysis.xlsx')

        else:
            st.info("πŸ€” No Actions found")


def policy_display():
    if  'key1' in st.session_state:
        df = st.session_state.key1
                
        
        df['Policy_check']  = df['Policy-Action Label'].apply(lambda x: True if 'Policies & Plans' in x else False)
        hits  = df[df['Policy_check'] == True]
        # hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i])
        range_val = min(5,len(hits))
        if range_val !=0:
            count_policy = len(hits)
            #count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
            #count_ghg = sum(hits['GHG Label'] == 'GHG')
            #count_economy = sum([True if 'Economy-wide' in x else False 
            #                  for x in hits['Sector Label']])
            
            # count_df = df['Target Label'].value_counts()
            # count_df = count_df.rename('count')
            # count_df = count_df.rename_axis('Target Label').reset_index()
            # count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])

            # fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200)
        #    c1, c2 = st.columns([1,1])
        #    with c1:
        #        st.write('**Target Paragraphs**: `{}`'.format(count_target))
        #        st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
#
 #               # st.plotly_chart(fig,use_container_width= True)
  #          
            # count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
            # count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
            # count_economy = sum([True if 'Economy-wide' in x else False 
            #                   for x in hits['Sector Label']])
     #       with c2:
      #          st.write('**GHG Related Paragraphs**: `{}`'.format(count_ghg))
       #         st.write('**Economy-wide Related Paragraphs**: `{}`'.format(count_economy))
        #    st.write('-------------------')    
    #        hits = hits.sort_values(by=['Relevancy'], ascending=False)
     #       netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
      #      if not netzerohit.empty:
       #         netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
        #        # st.write('-------------------')
                # st.markdown("###### Netzero paragraph ######")
      #          st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
      #                          netzerohit.iloc[0]['text'].replace("\n", " ")))                        
       #         st.write("")
        #    else:
         #       st.info("πŸ€” No Netzero paragraph found")

            # st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
           # st.write('-------------------')
            st.write("")
            st.markdown("###### Top few Policy/Plans Classified paragraph/text results from list of {} classified paragraphs ######".format(count_policy))
            st.markdown("""<hr style="height:10px;border:none;color:#097969;background-color:#097969;" /> """, unsafe_allow_html=True)
            range_val = min(5,len(hits))
            for i in range(range_val):
                # the page number reflects the page that contains the main paragraph 
                # according to split limit, the overlapping part can be on a separate page
                st.write('**Result {}** : `page {}`, `Sector: {}`,\
                            `Indicators: {}`, `Adapt-Mitig :{}`'\
                    .format(i+1,
                            hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
                            hits.iloc[i]['Indicator Label'],hits.iloc[i]['Adapt-Mitig Label']))                        
                st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
            hits = hits.reset_index(drop =True)
            st.write('----------------')
            st.write('Explore the data')
            st.write(hits)
            df.drop(columns = ['Policy_check'],inplace=True)
            df_xlsx = to_excel(df)
            
            with st.sidebar:
                st.write('-------------')
                st.download_button(label='πŸ“₯ Download Result',
                            data=df_xlsx ,
                            file_name= 'cpu_analysis.xlsx')

        else:
            st.info("πŸ€” No Policy/Plans found")