ppsingh commited on
Commit
bc82aca
·
1 Parent(s): 155bcb1
Files changed (1) hide show
  1. app.py +24 -24
app.py CHANGED
@@ -23,30 +23,30 @@ with st.container():
23
  st.markdown("<h2 style='text-align: center; color: black;'> Climate Policy Intelligence App </h2>", unsafe_allow_html=True)
24
  st.write(' ')
25
 
26
- # with st.expander("ℹ️ - About this app", expanded=False):
27
- # st.write(
28
- # """
29
- # Climate Policy Understanding App is an open-source\
30
- # digital tool which aims to assist policy analysts and \
31
- # other users in extracting and filtering relevant \
32
- # information from public documents.
33
-
34
- # What Happens in background?
35
-
36
- # - Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
37
- # In this step the document is broken into smaller paragraphs \
38
- # (based on word/sentence count).
39
- # - Step 2: The paragraphs are fed to **Target Classifier** which detects if
40
- # the paragraph contains any *Target* related information or not.
41
- # - Step 3: The paragraphs which are detected containing some target \
42
- # related information are then fed to multiple classifier to enrich the
43
- # Information Extraction.
44
-
45
- # Classifiers
46
- # - Netzero:
47
 
48
- # """)
49
- # st.write("")
50
  apps = [processing.app, target_extraction.app, netzero.app, ghg.app,
51
  sector.app, adapmit.app]
52
  multiplier_val =1/len(apps)
@@ -57,5 +57,5 @@ if st.button("Get the work done"):
57
  prg.progress((i+1)*multiplier_val)
58
 
59
  if 'key1' in st.session_state:
60
- # target_extraction.target_display()
61
  st.write(st.session_state.key1)
 
23
  st.markdown("<h2 style='text-align: center; color: black;'> Climate Policy Intelligence App </h2>", unsafe_allow_html=True)
24
  st.write(' ')
25
 
26
+ with st.expander("ℹ️ - About this app", expanded=False):
27
+ st.write(
28
+ """
29
+ Climate Policy Understanding App is an open-source\
30
+ digital tool which aims to assist policy analysts and \
31
+ other users in extracting and filtering relevant \
32
+ information from public documents.
33
+
34
+ What Happens in background?
35
+
36
+ - Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
37
+ In this step the document is broken into smaller paragraphs \
38
+ (based on word/sentence count).
39
+ - Step 2: The paragraphs are fed to **Target Classifier** which detects if
40
+ the paragraph contains any *Target* related information or not.
41
+ - Step 3: The paragraphs which are detected containing some target \
42
+ related information are then fed to multiple classifier to enrich the
43
+ Information Extraction.
44
+
45
+ Classifiers
46
+ - Netzero:
47
 
48
+ """)
49
+ st.write("")
50
  apps = [processing.app, target_extraction.app, netzero.app, ghg.app,
51
  sector.app, adapmit.app]
52
  multiplier_val =1/len(apps)
 
57
  prg.progress((i+1)*multiplier_val)
58
 
59
  if 'key1' in st.session_state:
60
+ target_extraction.target_display()
61
  st.write(st.session_state.key1)