statistics
Browse files
app.py
CHANGED
@@ -23,30 +23,30 @@ with st.container():
|
|
23 |
st.markdown("<h2 style='text-align: center; color: black;'> Climate Policy Intelligence App </h2>", unsafe_allow_html=True)
|
24 |
st.write(' ')
|
25 |
|
26 |
-
with st.expander("ℹ️ - About this app", expanded=False):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
apps = [processing.app, target_extraction.app, netzero.app, ghg.app,
|
51 |
sector.app, adapmit.app]
|
52 |
multiplier_val =100/len(apps)
|
|
|
23 |
st.markdown("<h2 style='text-align: center; color: black;'> Climate Policy Intelligence App </h2>", unsafe_allow_html=True)
|
24 |
st.write(' ')
|
25 |
|
26 |
+
# with st.expander("ℹ️ - About this app", expanded=False):
|
27 |
+
# st.write(
|
28 |
+
# """
|
29 |
+
# Climate Policy Understanding App is an open-source\
|
30 |
+
# digital tool which aims to assist policy analysts and \
|
31 |
+
# other users in extracting and filtering relevant \
|
32 |
+
# information from public documents.
|
33 |
+
|
34 |
+
# What Happens in background?
|
35 |
+
|
36 |
+
# - Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
|
37 |
+
# In this step the document is broken into smaller paragraphs \
|
38 |
+
# (based on word/sentence count).
|
39 |
+
# - Step 2: The paragraphs are fed to **Target Classifier** which detects if
|
40 |
+
# the paragraph contains any *Target* related information or not.
|
41 |
+
# - Step 3: The paragraphs which are detected containing some target \
|
42 |
+
# related information are then fed to multiple classifier to enrich the
|
43 |
+
# Information Extraction.
|
44 |
+
|
45 |
+
# Classifiers
|
46 |
+
# - Netzero:
|
47 |
|
48 |
+
# """)
|
49 |
+
# st.write("")
|
50 |
apps = [processing.app, target_extraction.app, netzero.app, ghg.app,
|
51 |
sector.app, adapmit.app]
|
52 |
multiplier_val =100/len(apps)
|