File size: 5,997 Bytes
1e5a262
 
 
 
 
 
 
 
 
74a942d
1e5a262
 
eab471f
5b4a98a
3f54553
a26f453
77a6d9d
74a942d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e5a262
 
afff22e
1e5a262
 
 
 
 
 
 
 
afff22e
1e5a262
 
afff22e
1e5a262
afff22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a942d
 
 
 
 
 
 
 
a26f453
5b4a98a
74a942d
a26f453
3f54553
27a4df7
77a6d9d
27a4df7
7f93a13
5b4a98a
 
 
74a942d
5b4a98a
 
74a942d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b4a98a
 
3b0709f
 
 
 
57455f3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import appStore.target as target_extraction
import appStore.netzero as netzero
import appStore.sector as sector
import appStore.adapmit as adapmit
import appStore.ghg as ghg
import appStore.policyaction as policyaction
import appStore.conditional as conditional
import appStore.indicator as indicator
import appStore.doc_processing as processing
from utils.uploadAndExample import add_upload
from PIL import Image
import streamlit as st

####################################### Dashboard ######################################################

# App 

st.set_page_config(page_title = 'Vulnerable Groups Identification', 
                   initial_sidebar_state='expanded', layout="wide") 

with st.sidebar:
    # upload and example doc
    choice = st.sidebar.radio(label = 'Select the Document',
                            help = 'You can upload the document \
                            or else you can try a example document', 
                            options = ('Upload Document', 'Try Example'), 
                            horizontal = True)
    add_upload(choice)

with st.container():
        st.markdown("<h2 style='text-align: center; color: black;'> Vulnerable Groups Identification </h2>", unsafe_allow_html=True)
        st.write(' ')

with st.expander("ℹ️ - About this app", expanded=False):
    st.write(
        """
        The Vulnerable Groups Identification App is an open-source\
        digital tool which aims to assist policy analysts and \
        other users in extracting and filtering relevant \
        information from public documents.
        """)
    st.write('**Definitions**')

    st.caption("""
            - **Place holder**: Place holder \
            Place holder \
            Place holder \
            Place holder \ 
            Place holder
              """)
    #c1, c2, c3 =  st.columns([12,1,10])
    #with c1:
        #image = Image.open('docStore/img/flow.jpg') 
        #st.image(image)
    #with c3:
        #st.write("""
        #    What happens in the background?
            
        #    - Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
        #    In this step the document is broken into smaller paragraphs \
        #    (based on word/sentence count).
        #    - Step 2: The paragraphs are fed to **Target Classifier** which detects if
        #    the paragraph contains any *Target* related information or not.
        #    - Step 3: The paragraphs which are detected containing some target \
        #    related information are then fed to multiple classifier to enrich the 
        #    Information Extraction.
    
        #    The Step 2 and 3 are repated then similarly for Action and  Policies & Plans.
        #    """)
                  
    #st.write("")


apps = [processing.app, target_extraction.app, netzero.app, ghg.app,
        policyaction.app, conditional.app, sector.app, adapmit.app,indicator.app]

multiplier_val =1/len(apps)
if st.button("Analyze Document"):
    prg = st.progress(0.0)
    for i,func in enumerate(apps):
        func()
        prg.progress((i+1)*multiplier_val)

    
if 'key1' in st.session_state:
    with st.sidebar:
        topic = st.radio(
                        "Which category you want to explore?",
                        ('Target', 'Action', 'Policies/Plans'))
    
    if topic == 'Target':
        target_extraction.target_display()
    elif topic == 'Action':
        policyaction.action_display()
    else: 
        policyaction.policy_display()
    # st.write(st.session_state.key1)

#st.title("Identify references to vulnerable groups.")

#st.write("""Vulnerable groups encompass various communities and individuals who are disproportionately affected by the impacts of climate change
#due to their socioeconomic status, geographical location, or inherent characteristics. By incorporating the needs and perspectives of these groups 
#into national climate policies, governments can ensure equitable outcomes, promote social justice, and strive to build resilience within the most marginalized populations, 
#fostering a more sustainable and inclusive society as we navigate the challenges posed by climate change.This app allows you to identify whether a text contains any 
#references to vulnerable groups, for example when talking about policy documents.""")

# Document upload
#uploaded_file = st.file_uploader("Upload your file here")

# Create text input box
#input_text = st.text_area(label='Please enter your text here', value="This policy has been implemented to support women.")

#st.write('Prediction:', model(input_text))

######################################### Model #########################################################

# Load the model
#model = SetFitModel.from_pretrained("leavoigt/vulnerable_groups")

# Define the classes
#id2label = {
 #   0: 'Agricultural communities',
 #   1: 'Children and Youth',
 #   2: 'Coastal communities',
 #   3: 'Drought-prone regions',
 #   4: 'Economically disadvantaged communities',
 #   5: 'Elderly population',
 #   6: 'Ethnic minorities and indigenous people',
 #   7: 'Informal sector workers',
 #   8: 'Migrants and Refugees',
 #   9: 'Other',
 #   10: 'People with Disabilities',
 #   11: 'Rural populations',
 #   12: 'Sexual minorities (LGBTQI+)',
 #   13: 'Urban populations',
 #   14: 'Women'}


### Process document to paragraphs 
# Source: https://blog.jcharistech.com/2021/01/21/how-to-save-uploaded-files-to-directory-in-streamlit-apps/

# Store uploaded file temporarily in directory to get file path (necessary for processing)
# def save_uploadedfile(upl_file):
#      with open(os.path.join("tempDir",upl_file.name),"wb") as f:
#          f.write(upl_file.getbuffer())
#      return st.success("Saved File:{} to tempDir".format(upl_file.name))

# if uploaded_file is not None: 
#     # Save the file 
#     file_details = {"FileName": uploaded_file.name, "FileType": uploaded_file.type}
#     save_uploadedfile(uploaded_file)

#     #Get the file path