Spaces:
Sleeping
Sleeping
from typing import List, Tuple | |
from typing_extensions import Literal | |
import logging | |
import pandas as pd | |
from pandas import DataFrame, Series | |
from utils.config import getconfig | |
from utils.preprocessing import processingpipeline | |
import streamlit as st | |
from transformers import pipeline | |
# Labels dictionary ### | |
_lab_dict = { | |
'GHG':'GHG', | |
'NOT_GHG':'NON GHG TRANSPORT TARGET', | |
'NEGATIVE':'OTHERS', | |
} | |
def load_ghgClassifier(config_file:str = None, classifier_name:str = None): | |
""" | |
loads the document classifier using haystack, where the name/path of model | |
in HF-hub as string is used to fetch the model object.Either configfile or | |
model should be passed. | |
1. https://docs.haystack.deepset.ai/reference/document-classifier-api | |
2. https://docs.haystack.deepset.ai/docs/document_classifier | |
Params | |
-------- | |
config_file: config file path from which to read the model name | |
classifier_name: if modelname is passed, it takes a priority if not \ | |
found then will look for configfile, else raise error. | |
Return: document classifier model | |
""" | |
if not classifier_name: | |
if not config_file: | |
logging.warning("Pass either model name or config file") | |
return | |
else: | |
config = getconfig(config_file) | |
classifier_name = config.get('ghg','MODEL') | |
logging.info("Loading ghg classifier") | |
doc_classifier = pipeline("text-classification", | |
model=classifier_name, | |
top_k =1) | |
return doc_classifier | |
def ghg_classification(haystack_doc:pd.DataFrame, | |
threshold:float = 0.5, | |
classifier_model:pipeline= None | |
)->Tuple[DataFrame,Series]: | |
""" | |
Text-Classification on the list of texts provided. Classifier provides the | |
most appropriate label for each text. these labels are in terms of if text | |
belongs to which particular Sustainable Devleopment Goal (SDG). | |
Params | |
--------- | |
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline | |
contains the list of paragraphs in different format,here the list of | |
Haystack Documents is used. | |
threshold: threshold value for the model to keep the results from classifier | |
classifiermodel: you can pass the classifier model directly,which takes priority | |
however if not then looks for model in streamlit session. | |
In case of streamlit avoid passing the model directly. | |
Returns | |
---------- | |
df: Dataframe with two columns['SDG:int', 'text'] | |
x: Series object with the unique SDG covered in the document uploaded and | |
the number of times it is covered/discussed/count_of_paragraphs. | |
""" | |
logging.info("Working on GHG Extraction") | |
haystack_doc['GHG Label'] = 'NA' | |
haystack_doc['GHG Score'] = 0.0 | |
# applying GHG Identifier to only 'Target' paragraphs. | |
temp = haystack_doc[haystack_doc['Target Label'] == 'TARGET'] | |
temp = temp.reset_index(drop=True) | |
df = haystack_doc[haystack_doc['Target Label'] == 'NEGATIVE'] | |
df = df.reset_index(drop=True) | |
if not classifier_model: | |
classifier_model = st.session_state['ghg_classifier'] | |
results = classifier_model(list(temp.text)) | |
labels_= [(l[0]['label'],l[0]['score']) for l in results] | |
temp['GHG Label'],temp['GHG Score'] = zip(*labels_) | |
temp['GHG Label'] = temp['GHG Label'].apply(lambda x: _lab_dict[x]) | |
# merge back Target and non-Target dataframe | |
df = pd.concat([df,temp]) | |
df = df.reset_index(drop =True) | |
df['GHG Score'] = df['GHG Score'].round(2) | |
df.index += 1 | |
return df | |