Spaces:
Sleeping
Sleeping
Delete utils/keyword_extraction.py
Browse files- utils/keyword_extraction.py +0 -140
utils/keyword_extraction.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
# from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
|
3 |
-
# import nltk
|
4 |
-
# nltk.download('stopwords')
|
5 |
-
# from nltk.corpus import stopwords
|
6 |
-
import pickle
|
7 |
-
from typing import List, Text
|
8 |
-
import logging
|
9 |
-
from summa import keywords
|
10 |
-
|
11 |
-
try:
|
12 |
-
import streamlit as st
|
13 |
-
except ImportError:
|
14 |
-
logging.info("Streamlit not installed")
|
15 |
-
|
16 |
-
|
17 |
-
def sort_coo(coo_matrix):
|
18 |
-
"""
|
19 |
-
It takes Coordinate format scipy sparse matrix and extracts info from same.\
|
20 |
-
1. https://kavita-ganesan.com/python-keyword-extraction/#.Y2-TFHbMJPb
|
21 |
-
"""
|
22 |
-
tuples = zip(coo_matrix.col, coo_matrix.data)
|
23 |
-
return sorted(tuples, key=lambda x: (x[1], x[0]), reverse=True)
|
24 |
-
|
25 |
-
def extract_topn_from_vector(feature_names, sorted_items, top_n=10):
|
26 |
-
"""get the feature names and tf-idf score of top n items
|
27 |
-
|
28 |
-
Params
|
29 |
-
---------
|
30 |
-
feature_names: list of words from vectorizer
|
31 |
-
sorted_items: tuple returned by sort_coo function defined in \
|
32 |
-
keyword_extraction.py
|
33 |
-
topn: topn words to be extracted using tfidf
|
34 |
-
|
35 |
-
Return
|
36 |
-
----------
|
37 |
-
results: top extracted keywords
|
38 |
-
|
39 |
-
"""
|
40 |
-
|
41 |
-
#use only topn items from vector
|
42 |
-
sorted_items = sorted_items[:top_n]
|
43 |
-
score_vals = []
|
44 |
-
feature_vals = []
|
45 |
-
|
46 |
-
# word index and corresponding tf-idf score
|
47 |
-
for idx, score in sorted_items:
|
48 |
-
|
49 |
-
#keep track of feature name and its corresponding score
|
50 |
-
score_vals.append(round(score, 3))
|
51 |
-
feature_vals.append(feature_names[idx])
|
52 |
-
|
53 |
-
results= {}
|
54 |
-
for idx in range(len(feature_vals)):
|
55 |
-
results[feature_vals[idx]]=score_vals[idx]
|
56 |
-
|
57 |
-
return results
|
58 |
-
|
59 |
-
|
60 |
-
def tfidf_keyword(textdata:str, vectorizer, tfidfmodel, top_n):
|
61 |
-
"""
|
62 |
-
TFIDF based keywords extraction
|
63 |
-
|
64 |
-
Params
|
65 |
-
---------
|
66 |
-
vectorizer: trained cont vectorizer model
|
67 |
-
tfidfmodel: TFIDF Tranformer model
|
68 |
-
top_n: Top N keywords to be extracted
|
69 |
-
textdata: text data to which needs keyword extraction
|
70 |
-
|
71 |
-
Return
|
72 |
-
----------
|
73 |
-
keywords: top extracted keywords
|
74 |
-
|
75 |
-
"""
|
76 |
-
features = vectorizer.get_feature_names_out()
|
77 |
-
tf_idf_vector=tfidfmodel.transform(vectorizer.transform(textdata))
|
78 |
-
sorted_items=sort_coo(tf_idf_vector.tocoo())
|
79 |
-
results=extract_topn_from_vector(features,sorted_items,top_n)
|
80 |
-
keywords = [keyword for keyword in results]
|
81 |
-
return keywords
|
82 |
-
|
83 |
-
def keyword_extraction(sdg:int,sdgdata:List[Text], top_n:int=10):
|
84 |
-
"""
|
85 |
-
TFIDF based keywords extraction
|
86 |
-
|
87 |
-
Params
|
88 |
-
---------
|
89 |
-
sdg: which sdg tfidf model to be used
|
90 |
-
sdgdata: text data to which needs keyword extraction
|
91 |
-
|
92 |
-
|
93 |
-
Return
|
94 |
-
----------
|
95 |
-
keywords: top extracted keywords
|
96 |
-
|
97 |
-
"""
|
98 |
-
model_path = "docStore/sdg{}/".format(sdg)
|
99 |
-
vectorizer = pickle.load(open(model_path+'vectorizer.pkl', 'rb'))
|
100 |
-
tfidfmodel = pickle.load(open(model_path+'tfidfmodel.pkl', 'rb'))
|
101 |
-
features = vectorizer.get_feature_names_out()
|
102 |
-
tf_idf_vector=tfidfmodel.transform(vectorizer.transform(sdgdata))
|
103 |
-
sorted_items=sort_coo(tf_idf_vector.tocoo())
|
104 |
-
top_n = top_n
|
105 |
-
results=extract_topn_from_vector(features,sorted_items,top_n)
|
106 |
-
keywords = [keyword for keyword in results]
|
107 |
-
return keywords
|
108 |
-
|
109 |
-
@st.cache(allow_output_mutation=True)
|
110 |
-
def textrank(textdata:Text, ratio:float = 0.1, words:int = 0)->List[str]:
|
111 |
-
"""
|
112 |
-
wrappper function to perform textrank, uses either ratio or wordcount to
|
113 |
-
extract top keywords limited by words or ratio.
|
114 |
-
1. https://github.com/summanlp/textrank/blob/master/summa/keywords.py
|
115 |
-
|
116 |
-
Params
|
117 |
-
--------
|
118 |
-
textdata: text data to perform the textrank.
|
119 |
-
ratio: float to limit the number of keywords as proportion of total token \
|
120 |
-
in textdata
|
121 |
-
words: number of keywords to be extracted. Takes priority over ratio if \
|
122 |
-
Non zero. Howevr incase the pagerank returns lesser keywords than \
|
123 |
-
compared to fix value then ratio is used.
|
124 |
-
|
125 |
-
Return
|
126 |
-
--------
|
127 |
-
results: extracted keywords
|
128 |
-
"""
|
129 |
-
if words == 0:
|
130 |
-
logging.info("Textrank using defulat ratio value = 0.1, as no words limit given")
|
131 |
-
results = keywords.keywords(textdata, ratio= ratio).split("\n")
|
132 |
-
else:
|
133 |
-
try:
|
134 |
-
results = keywords.keywords(textdata, words= words).split("\n")
|
135 |
-
except:
|
136 |
-
results = keywords.keywords(textdata, ratio = ratio).split("\n")
|
137 |
-
|
138 |
-
return results
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|