Spaces:
Sleeping
Sleeping
Update appStore/target.py
Browse files- appStore/target.py +221 -9
appStore/target.py
CHANGED
@@ -8,19 +8,231 @@ import matplotlib.pyplot as plt
|
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
import streamlit as st
|
11 |
-
from utils.
|
|
|
|
|
12 |
from utils.config import get_classifier_params
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Declare all the necessary variables
|
15 |
-
classifier_identifier = '
|
16 |
params = get_classifier_params(classifier_identifier)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
|
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
import streamlit as st
|
11 |
+
from utils.group_classifier import load_policyactionClassifier, policyaction_classification
|
12 |
+
import logging
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
from utils.config import get_classifier_params
|
15 |
+
from utils.preprocessing import paraLengthCheck
|
16 |
+
from io import BytesIO
|
17 |
+
import xlsxwriter
|
18 |
+
import plotly.express as px
|
19 |
+
|
20 |
|
21 |
# Declare all the necessary variables
|
22 |
+
classifier_identifier = 'policyaction'
|
23 |
params = get_classifier_params(classifier_identifier)
|
24 |
|
25 |
+
@st.cache_data
|
26 |
+
def to_excel(df):
|
27 |
+
df['Target Validation'] = 'No'
|
28 |
+
df['Netzero Validation'] = 'No'
|
29 |
+
df['GHG Validation'] = 'No'
|
30 |
+
df['Adapt-Mitig Validation'] = 'No'
|
31 |
+
df['Sector'] = 'No'
|
32 |
+
len_df = len(df)
|
33 |
+
output = BytesIO()
|
34 |
+
writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
35 |
+
df.to_excel(writer, index=False, sheet_name='Sheet1')
|
36 |
+
workbook = writer.book
|
37 |
+
worksheet = writer.sheets['Sheet1']
|
38 |
+
worksheet.data_validation('L2:L{}'.format(len_df),
|
39 |
+
{'validate': 'list',
|
40 |
+
'source': ['No', 'Yes', 'Discard']})
|
41 |
+
worksheet.data_validation('M2:L{}'.format(len_df),
|
42 |
+
{'validate': 'list',
|
43 |
+
'source': ['No', 'Yes', 'Discard']})
|
44 |
+
worksheet.data_validation('N2:L{}'.format(len_df),
|
45 |
+
{'validate': 'list',
|
46 |
+
'source': ['No', 'Yes', 'Discard']})
|
47 |
+
worksheet.data_validation('O2:L{}'.format(len_df),
|
48 |
+
{'validate': 'list',
|
49 |
+
'source': ['No', 'Yes', 'Discard']})
|
50 |
+
worksheet.data_validation('P2:L{}'.format(len_df),
|
51 |
+
{'validate': 'list',
|
52 |
+
'source': ['No', 'Yes', 'Discard']})
|
53 |
+
writer.save()
|
54 |
+
processed_data = output.getvalue()
|
55 |
+
return processed_data
|
56 |
+
|
57 |
+
def app():
|
58 |
+
|
59 |
+
### Main app code ###
|
60 |
+
with st.container():
|
61 |
+
|
62 |
+
if 'key1' in st.session_state:
|
63 |
+
df = st.session_state.key1
|
64 |
+
classifier = load_policyactionClassifier(classifier_name=params['model_name'])
|
65 |
+
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
|
66 |
+
|
67 |
+
if sum(df['Target Label'] == 'TARGET') > 100:
|
68 |
+
warning_msg = ": This might take sometime, please sit back and relax."
|
69 |
+
else:
|
70 |
+
warning_msg = ""
|
71 |
+
|
72 |
+
df = policyaction_classification(haystack_doc=df,
|
73 |
+
threshold= params['threshold'])
|
74 |
+
|
75 |
+
st.session_state.key1 = df
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
def action_display():
|
80 |
+
if 'key1' in st.session_state:
|
81 |
+
df = st.session_state.key1
|
82 |
+
|
83 |
+
|
84 |
+
df['Action_check'] = df['Policy-Action Label'].apply(lambda x: True if 'Action' in x else False)
|
85 |
+
hits = df[df['Action_check'] == True]
|
86 |
+
# hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i])
|
87 |
+
range_val = min(5,len(hits))
|
88 |
+
if range_val !=0:
|
89 |
+
count_action = len(hits)
|
90 |
+
#count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
|
91 |
+
#count_ghg = sum(hits['GHG Label'] == 'GHG')
|
92 |
+
#count_economy = sum([True if 'Economy-wide' in x else False
|
93 |
+
# for x in hits['Sector Label']])
|
94 |
+
|
95 |
+
# count_df = df['Target Label'].value_counts()
|
96 |
+
# count_df = count_df.rename('count')
|
97 |
+
# count_df = count_df.rename_axis('Target Label').reset_index()
|
98 |
+
# count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])
|
99 |
+
|
100 |
+
# fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200)
|
101 |
+
# c1, c2 = st.columns([1,1])
|
102 |
+
# with c1:
|
103 |
+
# st.write('**Target Paragraphs**: `{}`'.format(count_target))
|
104 |
+
# st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
|
105 |
+
#
|
106 |
+
# # st.plotly_chart(fig,use_container_width= True)
|
107 |
+
#
|
108 |
+
# count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
|
109 |
+
# count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
|
110 |
+
# count_economy = sum([True if 'Economy-wide' in x else False
|
111 |
+
# for x in hits['Sector Label']])
|
112 |
+
# with c2:
|
113 |
+
# st.write('**GHG Related Paragraphs**: `{}`'.format(count_ghg))
|
114 |
+
# st.write('**Economy-wide Related Paragraphs**: `{}`'.format(count_economy))
|
115 |
+
# st.write('-------------------')
|
116 |
+
# hits = hits.sort_values(by=['Relevancy'], ascending=False)
|
117 |
+
# netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
|
118 |
+
# if not netzerohit.empty:
|
119 |
+
# netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
|
120 |
+
# # st.write('-------------------')
|
121 |
+
# st.markdown("###### Netzero paragraph ######")
|
122 |
+
# st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
|
123 |
+
# netzerohit.iloc[0]['text'].replace("\n", " ")))
|
124 |
+
# st.write("")
|
125 |
+
# else:
|
126 |
+
# st.info("🤔 No Netzero paragraph found")
|
127 |
+
|
128 |
+
# st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
|
129 |
+
# st.write('-------------------')
|
130 |
+
st.write("")
|
131 |
+
st.markdown("###### Top few Action Classified paragraph/text results from list of {} classified paragraphs ######".format(count_action))
|
132 |
+
st.markdown("""<hr style="height:10px;border:none;color:#097969;background-color:#097969;" /> """, unsafe_allow_html=True)
|
133 |
+
range_val = min(5,len(hits))
|
134 |
+
for i in range(range_val):
|
135 |
+
# the page number reflects the page that contains the main paragraph
|
136 |
+
# according to split limit, the overlapping part can be on a separate page
|
137 |
+
st.write('**Result {}** : `page {}`, `Sector: {}`,\
|
138 |
+
`Indicators: {}`, `Adapt-Mitig :{}`'\
|
139 |
+
.format(i+1,
|
140 |
+
hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
|
141 |
+
hits.iloc[i]['Indicator Label'],hits.iloc[i]['Adapt-Mitig Label']))
|
142 |
+
st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
|
143 |
+
hits = hits.reset_index(drop =True)
|
144 |
+
st.write('----------------')
|
145 |
+
st.write('Explore the data')
|
146 |
+
st.write(hits)
|
147 |
+
df.drop(columns = ['Action_check'],inplace=True)
|
148 |
+
df_xlsx = to_excel(df)
|
149 |
+
|
150 |
+
with st.sidebar:
|
151 |
+
st.write('-------------')
|
152 |
+
st.download_button(label='📥 Download Result',
|
153 |
+
data=df_xlsx ,
|
154 |
+
file_name= 'cpu_analysis.xlsx')
|
155 |
+
|
156 |
+
else:
|
157 |
+
st.info("🤔 No Actions found")
|
158 |
+
|
159 |
+
|
160 |
+
def policy_display():
|
161 |
+
if 'key1' in st.session_state:
|
162 |
+
df = st.session_state.key1
|
163 |
+
|
164 |
+
|
165 |
+
df['Policy_check'] = df['Policy-Action Label'].apply(lambda x: True if 'Policies & Plans' in x else False)
|
166 |
+
hits = df[df['Policy_check'] == True]
|
167 |
+
# hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i])
|
168 |
+
range_val = min(5,len(hits))
|
169 |
+
if range_val !=0:
|
170 |
+
count_policy = len(hits)
|
171 |
+
#count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
|
172 |
+
#count_ghg = sum(hits['GHG Label'] == 'GHG')
|
173 |
+
#count_economy = sum([True if 'Economy-wide' in x else False
|
174 |
+
# for x in hits['Sector Label']])
|
175 |
+
|
176 |
+
# count_df = df['Target Label'].value_counts()
|
177 |
+
# count_df = count_df.rename('count')
|
178 |
+
# count_df = count_df.rename_axis('Target Label').reset_index()
|
179 |
+
# count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])
|
180 |
+
|
181 |
+
# fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200)
|
182 |
+
# c1, c2 = st.columns([1,1])
|
183 |
+
# with c1:
|
184 |
+
# st.write('**Target Paragraphs**: `{}`'.format(count_target))
|
185 |
+
# st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
|
186 |
+
#
|
187 |
+
# # st.plotly_chart(fig,use_container_width= True)
|
188 |
+
#
|
189 |
+
# count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
|
190 |
+
# count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
|
191 |
+
# count_economy = sum([True if 'Economy-wide' in x else False
|
192 |
+
# for x in hits['Sector Label']])
|
193 |
+
# with c2:
|
194 |
+
# st.write('**GHG Related Paragraphs**: `{}`'.format(count_ghg))
|
195 |
+
# st.write('**Economy-wide Related Paragraphs**: `{}`'.format(count_economy))
|
196 |
+
# st.write('-------------------')
|
197 |
+
# hits = hits.sort_values(by=['Relevancy'], ascending=False)
|
198 |
+
# netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
|
199 |
+
# if not netzerohit.empty:
|
200 |
+
# netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
|
201 |
+
# # st.write('-------------------')
|
202 |
+
# st.markdown("###### Netzero paragraph ######")
|
203 |
+
# st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
|
204 |
+
# netzerohit.iloc[0]['text'].replace("\n", " ")))
|
205 |
+
# st.write("")
|
206 |
+
# else:
|
207 |
+
# st.info("🤔 No Netzero paragraph found")
|
208 |
|
209 |
+
# st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
|
210 |
+
# st.write('-------------------')
|
211 |
+
st.write("")
|
212 |
+
st.markdown("###### Top few Policy/Plans Classified paragraph/text results from list of {} classified paragraphs ######".format(count_policy))
|
213 |
+
st.markdown("""<hr style="height:10px;border:none;color:#097969;background-color:#097969;" /> """, unsafe_allow_html=True)
|
214 |
+
range_val = min(5,len(hits))
|
215 |
+
for i in range(range_val):
|
216 |
+
# the page number reflects the page that contains the main paragraph
|
217 |
+
# according to split limit, the overlapping part can be on a separate page
|
218 |
+
st.write('**Result {}** : `page {}`, `Sector: {}`,\
|
219 |
+
`Indicators: {}`, `Adapt-Mitig :{}`'\
|
220 |
+
.format(i+1,
|
221 |
+
hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
|
222 |
+
hits.iloc[i]['Indicator Label'],hits.iloc[i]['Adapt-Mitig Label']))
|
223 |
+
st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
|
224 |
+
hits = hits.reset_index(drop =True)
|
225 |
+
st.write('----------------')
|
226 |
+
st.write('Explore the data')
|
227 |
+
st.write(hits)
|
228 |
+
df.drop(columns = ['Policy_check'],inplace=True)
|
229 |
+
df_xlsx = to_excel(df)
|
230 |
+
|
231 |
+
with st.sidebar:
|
232 |
+
st.write('-------------')
|
233 |
+
st.download_button(label='📥 Download Result',
|
234 |
+
data=df_xlsx ,
|
235 |
+
file_name= 'cpu_analysis.xlsx')
|
236 |
|
237 |
+
else:
|
238 |
+
st.info("🤔 No Policy/Plans found")
|