leavoigt commited on
Commit
45554c5
·
1 Parent(s): 94caa1d

Delete utils/target_classifier.py

Browse files
Files changed (1) hide show
  1. utils/target_classifier.py +0 -89
utils/target_classifier.py DELETED
@@ -1,89 +0,0 @@
1
- from typing import List, Tuple
2
- from typing_extensions import Literal
3
- import logging
4
- import pandas as pd
5
- from pandas import DataFrame, Series
6
- from utils.config import getconfig
7
- from utils.preprocessing import processingpipeline
8
- import streamlit as st
9
- from transformers import pipeline
10
-
11
- ## Labels dictionary ###
12
- _lab_dict = {
13
- 'NEGATIVE':'NO TARGET INFO',
14
- 'TARGET':'TARGET',
15
- }
16
-
17
- @st.cache_resource
18
- def load_targetClassifier(config_file:str = None, classifier_name:str = None):
19
- """
20
- loads the document classifier using haystack, where the name/path of model
21
- in HF-hub as string is used to fetch the model object.Either configfile or
22
- model should be passed.
23
- 1. https://docs.haystack.deepset.ai/reference/document-classifier-api
24
- 2. https://docs.haystack.deepset.ai/docs/document_classifier
25
- Params
26
- --------
27
- config_file: config file path from which to read the model name
28
- classifier_name: if modelname is passed, it takes a priority if not \
29
- found then will look for configfile, else raise error.
30
- Return: document classifier model
31
- """
32
- if not classifier_name:
33
- if not config_file:
34
- logging.warning("Pass either model name or config file")
35
- return
36
- else:
37
- config = getconfig(config_file)
38
- classifier_name = config.get('target','MODEL')
39
-
40
- logging.info("Loading classifier")
41
-
42
- doc_classifier = pipeline("text-classification",
43
- model=classifier_name,
44
- top_k =1)
45
-
46
- return doc_classifier
47
-
48
-
49
- @st.cache_data
50
- def target_classification(haystack_doc:pd.DataFrame,
51
- threshold:float = 0.5,
52
- classifier_model:pipeline= None
53
- )->Tuple[DataFrame,Series]:
54
- """
55
- Text-Classification on the list of texts provided. Classifier provides the
56
- most appropriate label for each text. these labels are in terms of if text
57
- belongs to which particular Sustainable Devleopment Goal (SDG).
58
- Params
59
- ---------
60
- haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
61
- contains the list of paragraphs in different format,here the list of
62
- Haystack Documents is used.
63
- threshold: threshold value for the model to keep the results from classifier
64
- classifiermodel: you can pass the classifier model directly,which takes priority
65
- however if not then looks for model in streamlit session.
66
- In case of streamlit avoid passing the model directly.
67
- Returns
68
- ----------
69
- df: Dataframe with two columns['SDG:int', 'text']
70
- x: Series object with the unique SDG covered in the document uploaded and
71
- the number of times it is covered/discussed/count_of_paragraphs.
72
- """
73
- logging.info("Working on Target Extraction")
74
- if not classifier_model:
75
- classifier_model = st.session_state['target_classifier']
76
-
77
- results = classifier_model(list(haystack_doc.text))
78
- labels_= [(l[0]['label'],
79
- l[0]['score']) for l in results]
80
-
81
-
82
- df1 = DataFrame(labels_, columns=["Target Label","Relevancy"])
83
- df = pd.concat([haystack_doc,df1],axis=1)
84
-
85
- df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
86
- df.index += 1
87
- df['Label_def'] = df['Target Label'].apply(lambda i: _lab_dict[i])
88
-
89
- return df