leavoigt commited on
Commit
4a8d0fb
·
1 Parent(s): 5138366

Create preprocessing.py

Browse files
Files changed (1) hide show
  1. utils/preprocessing.py +283 -0
utils/preprocessing.py ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from haystack.nodes.base import BaseComponent
2
+ from haystack.schema import Document
3
+ from haystack.nodes import PDFToTextOCRConverter, PDFToTextConverter
4
+ from haystack.nodes import TextConverter, DocxToTextConverter, PreProcessor
5
+ from typing import Callable, Dict, List, Optional, Text, Tuple, Union
6
+ from typing_extensions import Literal
7
+ import pandas as pd
8
+ import logging
9
+ import re
10
+ import string
11
+ from haystack.pipelines import Pipeline
12
+
13
+ def useOCR(file_path: str)-> Text:
14
+ """
15
+ Converts image pdfs into text, Using the Farm-haystack[OCR]
16
+
17
+ Params
18
+ ----------
19
+ file_path: file_path of uploade file, returned by add_upload function in
20
+ uploadAndExample.py
21
+
22
+ Returns the text file as string.
23
+ """
24
+
25
+
26
+ converter = PDFToTextOCRConverter(remove_numeric_tables=True,
27
+ valid_languages=["eng"])
28
+ docs = converter.convert(file_path=file_path, meta=None)
29
+ return docs[0].content
30
+
31
+
32
+
33
+
34
+ class FileConverter(BaseComponent):
35
+ """
36
+ Wrapper class to convert uploaded document into text by calling appropriate
37
+ Converter class, will use internally haystack PDFToTextOCR in case of image
38
+ pdf. Cannot use the FileClassifier from haystack as its doesnt has any
39
+ label/output class for image.
40
+ 1. https://haystack.deepset.ai/pipeline_nodes/custom-nodes
41
+ 2. https://docs.haystack.deepset.ai/docs/file_converters
42
+ 3. https://github.com/deepset-ai/haystack/tree/main/haystack/nodes/file_converter
43
+ 4. https://docs.haystack.deepset.ai/reference/file-converters-api
44
+ """
45
+
46
+ outgoing_edges = 1
47
+
48
+ def run(self, file_name: str , file_path: str, encoding: Optional[str]=None,
49
+ id_hash_keys: Optional[List[str]] = None,
50
+ ) -> Tuple[dict,str]:
51
+ """ this is required method to invoke the component in
52
+ the pipeline implementation.
53
+
54
+ Params
55
+ ----------
56
+ file_name: name of file
57
+ file_path: file_path of uploade file, returned by add_upload function in
58
+ uploadAndExample.py
59
+
60
+ See the links provided in Class docstring/description to see other params
61
+
62
+ Return
63
+ ---------
64
+ output: dictionary, with key as identifier and value could be anything
65
+ we need to return. In this case its the List of Hasyatck Document
66
+
67
+ output_1: As there is only one outgoing edge, we pass 'output_1' string
68
+ """
69
+ try:
70
+ if file_name.endswith('.pdf'):
71
+ converter = PDFToTextConverter(remove_numeric_tables=True)
72
+ if file_name.endswith('.txt'):
73
+ converter = TextConverter(remove_numeric_tables=True)
74
+ if file_name.endswith('.docx'):
75
+ converter = DocxToTextConverter()
76
+ except Exception as e:
77
+ logging.error(e)
78
+ return
79
+
80
+
81
+
82
+ documents = []
83
+
84
+
85
+ # encoding is empty, probably should be utf-8
86
+ document = converter.convert(
87
+ file_path=file_path, meta=None,
88
+ encoding=encoding, id_hash_keys=id_hash_keys
89
+ )[0]
90
+
91
+ text = document.content
92
+
93
+ # in case of scanned/images only PDF the content might contain only
94
+ # the page separator (\f or \x0c). We check if is so and use
95
+ # use the OCR to get the text.
96
+ filtered = re.sub(r'\x0c', '', text)
97
+
98
+ if filtered == "":
99
+ logging.info("Using OCR")
100
+ text = useOCR(file_path)
101
+
102
+ documents.append(Document(content=text,
103
+ meta={"name": file_name},
104
+ id_hash_keys=id_hash_keys))
105
+
106
+ logging.info('file conversion succesful')
107
+ output = {'documents': documents}
108
+ return output, 'output_1'
109
+
110
+ def run_batch():
111
+ """
112
+ we dont have requirement to process the multiple files in one go
113
+ therefore nothing here, however to use the custom node we need to have
114
+ this method for the class.
115
+ """
116
+
117
+ return
118
+
119
+
120
+ def basic(s:str, remove_punc:bool = False):
121
+
122
+ """
123
+ Performs basic cleaning of text.
124
+ Params
125
+ ----------
126
+ s: string to be processed
127
+ removePunc: to remove all Punctuation including ',' and '.' or not
128
+
129
+ Returns: processed string: see comments in the source code for more info
130
+ """
131
+
132
+ # Remove URLs
133
+ s = re.sub(r'^https?:\/\/.*[\r\n]*', ' ', s, flags=re.MULTILINE)
134
+ s = re.sub(r"http\S+", " ", s)
135
+
136
+ # Remove new line characters
137
+ s = re.sub('\n', ' ', s)
138
+
139
+ # Remove punctuations
140
+ if remove_punc == True:
141
+ translator = str.maketrans(' ', ' ', string.punctuation)
142
+ s = s.translate(translator)
143
+ # Remove distracting single quotes and dotted pattern
144
+ s = re.sub("\'", " ", s)
145
+ s = s.replace("..","")
146
+
147
+ return s.strip()
148
+
149
+ def paraLengthCheck(paraList, max_len = 100):
150
+ """
151
+ There are cases where preprocessor cannot respect word limit, when using
152
+ respect sentence boundary flag due to missing sentence boundaries.
153
+ Therefore we run one more round of split here for those paragraphs
154
+
155
+ Params
156
+ ---------------
157
+ paraList : list of paragraphs/text
158
+ max_len : max length to be respected by sentences which bypassed
159
+ preprocessor strategy
160
+
161
+ """
162
+ new_para_list = []
163
+ for passage in paraList:
164
+ # check if para exceeds words limit
165
+ if len(passage.content.split()) > max_len:
166
+ # we might need few iterations example if para = 512 tokens
167
+ # we need to iterate 5 times to reduce para to size limit of '100'
168
+ iterations = int(len(passage.content.split())/max_len)
169
+ for i in range(iterations):
170
+ temp = " ".join(passage.content.split()[max_len*i:max_len*(i+1)])
171
+ new_para_list.append((temp,passage.meta['page']))
172
+ temp = " ".join(passage.content.split()[max_len*(i+1):])
173
+ new_para_list.append((temp,passage.meta['page']))
174
+ else:
175
+ # paragraphs which dont need any splitting
176
+ new_para_list.append((passage.content, passage.meta['page']))
177
+
178
+ logging.info("New paragraphs length {}".format(len(new_para_list)))
179
+ return new_para_list
180
+
181
+ class UdfPreProcessor(BaseComponent):
182
+ """
183
+ class to preprocess the document returned by FileConverter. It will check
184
+ for splitting strategy and splits the document by word or sentences and then
185
+ synthetically create the paragraphs.
186
+ 1. https://docs.haystack.deepset.ai/docs/preprocessor
187
+ 2. https://docs.haystack.deepset.ai/reference/preprocessor-api
188
+ 3. https://github.com/deepset-ai/haystack/tree/main/haystack/nodes/preprocessor
189
+ """
190
+ outgoing_edges = 1
191
+
192
+ def run(self, documents:List[Document], remove_punc:bool=False,
193
+ split_by: Literal["sentence", "word"] = 'sentence',
194
+ split_length:int = 2, split_respect_sentence_boundary:bool = False,
195
+ split_overlap:int = 0):
196
+
197
+ """ this is required method to invoke the component in
198
+ the pipeline implementation.
199
+
200
+ Params
201
+ ----------
202
+ documents: documents from the output dictionary returned by Fileconverter
203
+ remove_punc: to remove all Punctuation including ',' and '.' or not
204
+ split_by: document splitting strategy either as word or sentence
205
+ split_length: when synthetically creating the paragrpahs from document,
206
+ it defines the length of paragraph.
207
+ split_respect_sentence_boundary: Used when using 'word' strategy for
208
+ splititng of text.
209
+ split_overlap: Number of words or sentences that overlap when creating
210
+ the paragraphs. This is done as one sentence or 'some words' make sense
211
+ when read in together with others. Therefore the overlap is used.
212
+
213
+ Return
214
+ ---------
215
+ output: dictionary, with key as identifier and value could be anything
216
+ we need to return. In this case the output will contain 4 objects
217
+ the paragraphs text list as List, Haystack document, Dataframe and
218
+ one raw text file.
219
+
220
+ output_1: As there is only one outgoing edge, we pass 'output_1' string
221
+
222
+ """
223
+
224
+ if split_by == 'sentence':
225
+ split_respect_sentence_boundary = False
226
+
227
+ else:
228
+ split_respect_sentence_boundary = split_respect_sentence_boundary
229
+
230
+ preprocessor = PreProcessor(
231
+ clean_empty_lines=True,
232
+ clean_whitespace=True,
233
+ clean_header_footer=True,
234
+ split_by=split_by,
235
+ split_length=split_length,
236
+ split_respect_sentence_boundary= split_respect_sentence_boundary,
237
+ split_overlap=split_overlap,
238
+
239
+ # will add page number only in case of PDF not for text/docx file.
240
+ add_page_number=True
241
+ )
242
+
243
+ for i in documents:
244
+ # # basic cleaning before passing it to preprocessor.
245
+ # i = basic(i)
246
+ docs_processed = preprocessor.process([i])
247
+ for item in docs_processed:
248
+ item.content = basic(item.content, remove_punc= remove_punc)
249
+
250
+ df = pd.DataFrame(docs_processed)
251
+ all_text = " ".join(df.content.to_list())
252
+ para_list = df.content.to_list()
253
+ logging.info('document split into {} paragraphs'.format(len(para_list)))
254
+ output = {'documents': docs_processed,
255
+ 'dataframe': df,
256
+ 'text': all_text,
257
+ 'paraList': para_list
258
+ }
259
+ return output, "output_1"
260
+ def run_batch():
261
+ """
262
+ we dont have requirement to process the multiple files in one go
263
+ therefore nothing here, however to use the custom node we need to have
264
+ this method for the class.
265
+ """
266
+ return
267
+
268
+ def processingpipeline():
269
+ """
270
+ Returns the preprocessing pipeline. Will use FileConverter and UdfPreProcesor
271
+ from utils.preprocessing
272
+ """
273
+
274
+ preprocessing_pipeline = Pipeline()
275
+ file_converter = FileConverter()
276
+ custom_preprocessor = UdfPreProcessor()
277
+
278
+ preprocessing_pipeline.add_node(component=file_converter,
279
+ name="FileConverter", inputs=["File"])
280
+ preprocessing_pipeline.add_node(component = custom_preprocessor,
281
+ name ='UdfPreProcessor', inputs=["FileConverter"])
282
+
283
+ return preprocessing_pipeline