Spaces:
Sleeping
Sleeping
Upload 11 files
Browse files- utils/adapmit_classifier.py +99 -0
- utils/conditional_classifier.py +95 -0
- utils/config.py +31 -0
- utils/ghg_classifier.py +96 -0
- utils/indicator_classifier.py +109 -0
- utils/netzero_classifier.py +88 -0
- utils/policyaction_classifier.py +101 -0
- utils/preprocessing.py +291 -0
- utils/sector_classifier.py +106 -0
- utils/target_classifier.py +89 -0
- utils/uploadAndExample.py +39 -0
utils/adapmit_classifier.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from typing_extensions import Literal
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import DataFrame, Series
|
6 |
+
from utils.config import getconfig
|
7 |
+
from utils.preprocessing import processingpipeline
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
@st.cache_resource
|
12 |
+
def load_adapmitClassifier(config_file:str = None, classifier_name:str = None):
|
13 |
+
"""
|
14 |
+
loads the document classifier using haystack, where the name/path of model
|
15 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
16 |
+
model should be passed.
|
17 |
+
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
18 |
+
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
19 |
+
Params
|
20 |
+
--------
|
21 |
+
config_file: config file path from which to read the model name
|
22 |
+
classifier_name: if modelname is passed, it takes a priority if not \
|
23 |
+
found then will look for configfile, else raise error.
|
24 |
+
Return: document classifier model
|
25 |
+
"""
|
26 |
+
if not classifier_name:
|
27 |
+
if not config_file:
|
28 |
+
logging.warning("Pass either model name or config file")
|
29 |
+
return
|
30 |
+
else:
|
31 |
+
config = getconfig(config_file)
|
32 |
+
classifier_name = config.get('adapmit','MODEL')
|
33 |
+
|
34 |
+
logging.info("Loading Adaptation Mitigation classifier")
|
35 |
+
doc_classifier = pipeline("text-classification",
|
36 |
+
model=classifier_name,
|
37 |
+
return_all_scores=True,
|
38 |
+
function_to_apply= "sigmoid")
|
39 |
+
|
40 |
+
|
41 |
+
return doc_classifier
|
42 |
+
|
43 |
+
|
44 |
+
@st.cache_data
|
45 |
+
def adapmit_classification(haystack_doc:pd.DataFrame,
|
46 |
+
threshold:float = 0.5,
|
47 |
+
classifier_model:pipeline= None
|
48 |
+
)->Tuple[DataFrame,Series]:
|
49 |
+
"""
|
50 |
+
Text-Classification on the list of texts provided. Classifier provides the
|
51 |
+
most appropriate label for each text. these labels are in terms of if text
|
52 |
+
belongs to which particular Sustainable Devleopment Goal (SDG).
|
53 |
+
Params
|
54 |
+
---------
|
55 |
+
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
56 |
+
contains the list of paragraphs in different format,here the list of
|
57 |
+
Haystack Documents is used.
|
58 |
+
threshold: threshold value for the model to keep the results from classifier
|
59 |
+
classifiermodel: you can pass the classifier model directly,which takes priority
|
60 |
+
however if not then looks for model in streamlit session.
|
61 |
+
In case of streamlit avoid passing the model directly.
|
62 |
+
Returns
|
63 |
+
----------
|
64 |
+
df: Dataframe with two columns['SDG:int', 'text']
|
65 |
+
x: Series object with the unique SDG covered in the document uploaded and
|
66 |
+
the number of times it is covered/discussed/count_of_paragraphs.
|
67 |
+
"""
|
68 |
+
logging.info("Working on Adaptation-Mitigation Identification")
|
69 |
+
haystack_doc['Adapt-Mitig Label'] = 'NA'
|
70 |
+
# df1 = haystack_doc[haystack_doc['Target Label'] == 'TARGET']
|
71 |
+
# df = haystack_doc[haystack_doc['Target Label'] == 'NEGATIVE']
|
72 |
+
|
73 |
+
if not classifier_model:
|
74 |
+
classifier_model = st.session_state['adapmit_classifier']
|
75 |
+
|
76 |
+
predictions = classifier_model(list(haystack_doc.text))
|
77 |
+
# converting the predictions to desired format
|
78 |
+
list_ = []
|
79 |
+
for i in range(len(predictions)):
|
80 |
+
|
81 |
+
temp = predictions[i]
|
82 |
+
placeholder = {}
|
83 |
+
for j in range(len(temp)):
|
84 |
+
placeholder[temp[j]['label']] = temp[j]['score']
|
85 |
+
list_.append(placeholder)
|
86 |
+
labels_ = [{**list_[l]} for l in range(len(predictions))]
|
87 |
+
truth_df = DataFrame.from_dict(labels_)
|
88 |
+
truth_df = truth_df.round(2)
|
89 |
+
truth_df = truth_df.astype(float) >= threshold
|
90 |
+
truth_df = truth_df.astype(str)
|
91 |
+
categories = list(truth_df.columns)
|
92 |
+
truth_df['Adapt-Mitig Label'] = truth_df.apply(lambda x: {i if x[i]=='True'
|
93 |
+
else None for i in categories}, axis=1)
|
94 |
+
truth_df['Adapt-Mitig Label'] = truth_df.apply(lambda x:
|
95 |
+
list(x['Adapt-Mitig Label'] -{None}),axis=1)
|
96 |
+
haystack_doc['Adapt-Mitig Label'] = list(truth_df['Adapt-Mitig Label'])
|
97 |
+
#df = pd.concat([df,df1])
|
98 |
+
|
99 |
+
return haystack_doc
|
utils/conditional_classifier.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from typing_extensions import Literal
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import DataFrame, Series
|
6 |
+
from utils.config import getconfig
|
7 |
+
from utils.preprocessing import processingpipeline
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
|
12 |
+
@st.cache_resource
|
13 |
+
def load_conditionalClassifier(config_file:str = None, classifier_name:str = None):
|
14 |
+
"""
|
15 |
+
loads the document classifier using haystack, where the name/path of model
|
16 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
17 |
+
model should be passed.
|
18 |
+
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
19 |
+
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
20 |
+
Params
|
21 |
+
--------
|
22 |
+
config_file: config file path from which to read the model name
|
23 |
+
classifier_name: if modelname is passed, it takes a priority if not \
|
24 |
+
found then will look for configfile, else raise error.
|
25 |
+
Return: document classifier model
|
26 |
+
"""
|
27 |
+
if not classifier_name:
|
28 |
+
if not config_file:
|
29 |
+
logging.warning("Pass either model name or config file")
|
30 |
+
return
|
31 |
+
else:
|
32 |
+
config = getconfig(config_file)
|
33 |
+
classifier_name = config.get('conditional','MODEL')
|
34 |
+
|
35 |
+
logging.info("Loading conditional classifier")
|
36 |
+
doc_classifier = pipeline("text-classification",
|
37 |
+
model=classifier_name,
|
38 |
+
top_k =1)
|
39 |
+
|
40 |
+
return doc_classifier
|
41 |
+
|
42 |
+
|
43 |
+
@st.cache_data
|
44 |
+
def conditional_classification(haystack_doc:pd.DataFrame,
|
45 |
+
threshold:float = 0.8,
|
46 |
+
classifier_model:pipeline= None
|
47 |
+
)->Tuple[DataFrame,Series]:
|
48 |
+
"""
|
49 |
+
Text-Classification on the list of texts provided. Classifier provides the
|
50 |
+
most appropriate label for each text. It informs if paragraph contains any
|
51 |
+
netzero information or not.
|
52 |
+
Params
|
53 |
+
---------
|
54 |
+
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
55 |
+
contains the list of paragraphs in different format,here the list of
|
56 |
+
Haystack Documents is used.
|
57 |
+
threshold: threshold value for the model to keep the results from classifier
|
58 |
+
classifiermodel: you can pass the classifier model directly,which takes priority
|
59 |
+
however if not then looks for model in streamlit session.
|
60 |
+
In case of streamlit avoid passing the model directly.
|
61 |
+
Returns
|
62 |
+
----------
|
63 |
+
df: Dataframe
|
64 |
+
"""
|
65 |
+
logging.info("Working on Conditionality Identification")
|
66 |
+
haystack_doc['Conditional Label'] = 'NA'
|
67 |
+
haystack_doc['Conditional Score'] = 0.0
|
68 |
+
haystack_doc['cond_check'] = False
|
69 |
+
haystack_doc['PA_check'] = haystack_doc['Policy-Action Label'].apply(lambda x: True if len(x) != 0 else False)
|
70 |
+
|
71 |
+
#df1 = haystack_doc[haystack_doc['PA_check'] == True]
|
72 |
+
#df = haystack_doc[haystack_doc['PA_check'] == False]
|
73 |
+
haystack_doc['cond_check'] = haystack_doc.apply(lambda x: True if (
|
74 |
+
(x['Target Label'] == 'TARGET') | (x['PA_check'] == True)) else
|
75 |
+
False, axis=1)
|
76 |
+
# we apply Netzero to only paragraphs which are classified as 'Target' related
|
77 |
+
temp = haystack_doc[haystack_doc['cond_check'] == True]
|
78 |
+
temp = temp.reset_index(drop=True)
|
79 |
+
df = haystack_doc[haystack_doc['cond_check'] == False]
|
80 |
+
df = df.reset_index(drop=True)
|
81 |
+
|
82 |
+
if not classifier_model:
|
83 |
+
classifier_model = st.session_state['conditional_classifier']
|
84 |
+
|
85 |
+
results = classifier_model(list(temp.text))
|
86 |
+
labels_= [(l[0]['label'],l[0]['score']) for l in results]
|
87 |
+
temp['Conditional Label'],temp['Conditional Score'] = zip(*labels_)
|
88 |
+
# temp[' Label'] = temp['Netzero Label'].apply(lambda x: _lab_dict[x])
|
89 |
+
# merging Target with Non Target dataframe
|
90 |
+
df = pd.concat([df,temp])
|
91 |
+
df = df.drop(columns = ['cond_check','PA_check'])
|
92 |
+
df = df.reset_index(drop =True)
|
93 |
+
df.index += 1
|
94 |
+
|
95 |
+
return df
|
utils/config.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import configparser
|
2 |
+
import logging
|
3 |
+
|
4 |
+
def getconfig(configfile_path:str):
|
5 |
+
"""
|
6 |
+
configfile_path: file path of .cfg file
|
7 |
+
"""
|
8 |
+
|
9 |
+
config = configparser.ConfigParser()
|
10 |
+
|
11 |
+
try:
|
12 |
+
config.read_file(open(configfile_path))
|
13 |
+
return config
|
14 |
+
except:
|
15 |
+
logging.warning("config file not found")
|
16 |
+
|
17 |
+
|
18 |
+
# Declare all the necessary variables
|
19 |
+
def get_classifier_params(model_name):
|
20 |
+
config = getconfig('paramconfig.cfg')
|
21 |
+
params = {}
|
22 |
+
params['model_name'] = config.get(model_name,'MODEL')
|
23 |
+
params['split_by'] = config.get(model_name,'SPLIT_BY')
|
24 |
+
params['split_length'] = int(config.get(model_name,'SPLIT_LENGTH'))
|
25 |
+
params['split_overlap'] = int(config.get(model_name,'SPLIT_OVERLAP'))
|
26 |
+
params['remove_punc'] = bool(int(config.get(model_name,'REMOVE_PUNC')))
|
27 |
+
params['split_respect_sentence_boundary'] = bool(int(config.get(model_name,'RESPECT_SENTENCE_BOUNDARY')))
|
28 |
+
params['threshold'] = float(config.get(model_name,'THRESHOLD'))
|
29 |
+
params['top_n'] = int(config.get(model_name,'TOP_KEY'))
|
30 |
+
|
31 |
+
return params
|
utils/ghg_classifier.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from typing_extensions import Literal
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import DataFrame, Series
|
6 |
+
from utils.config import getconfig
|
7 |
+
from utils.preprocessing import processingpipeline
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
# Labels dictionary ###
|
12 |
+
_lab_dict = {
|
13 |
+
'GHG':'GHG',
|
14 |
+
'NOT_GHG':'NON GHG TRANSPORT TARGET',
|
15 |
+
'NEGATIVE':'OTHERS',
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
@st.cache_resource
|
20 |
+
def load_ghgClassifier(config_file:str = None, classifier_name:str = None):
|
21 |
+
"""
|
22 |
+
loads the document classifier using haystack, where the name/path of model
|
23 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
24 |
+
model should be passed.
|
25 |
+
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
26 |
+
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
27 |
+
Params
|
28 |
+
--------
|
29 |
+
config_file: config file path from which to read the model name
|
30 |
+
classifier_name: if modelname is passed, it takes a priority if not \
|
31 |
+
found then will look for configfile, else raise error.
|
32 |
+
Return: document classifier model
|
33 |
+
"""
|
34 |
+
if not classifier_name:
|
35 |
+
if not config_file:
|
36 |
+
logging.warning("Pass either model name or config file")
|
37 |
+
return
|
38 |
+
else:
|
39 |
+
config = getconfig(config_file)
|
40 |
+
classifier_name = config.get('ghg','MODEL')
|
41 |
+
|
42 |
+
logging.info("Loading ghg classifier")
|
43 |
+
doc_classifier = pipeline("text-classification",
|
44 |
+
model=classifier_name,
|
45 |
+
top_k =1)
|
46 |
+
|
47 |
+
return doc_classifier
|
48 |
+
|
49 |
+
|
50 |
+
@st.cache_data
|
51 |
+
def ghg_classification(haystack_doc:pd.DataFrame,
|
52 |
+
threshold:float = 0.5,
|
53 |
+
classifier_model:pipeline= None
|
54 |
+
)->Tuple[DataFrame,Series]:
|
55 |
+
"""
|
56 |
+
Text-Classification on the list of texts provided. Classifier provides the
|
57 |
+
most appropriate label for each text. these labels are in terms of if text
|
58 |
+
belongs to which particular Sustainable Devleopment Goal (SDG).
|
59 |
+
Params
|
60 |
+
---------
|
61 |
+
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
62 |
+
contains the list of paragraphs in different format,here the list of
|
63 |
+
Haystack Documents is used.
|
64 |
+
threshold: threshold value for the model to keep the results from classifier
|
65 |
+
classifiermodel: you can pass the classifier model directly,which takes priority
|
66 |
+
however if not then looks for model in streamlit session.
|
67 |
+
In case of streamlit avoid passing the model directly.
|
68 |
+
Returns
|
69 |
+
----------
|
70 |
+
df: Dataframe with two columns['SDG:int', 'text']
|
71 |
+
x: Series object with the unique SDG covered in the document uploaded and
|
72 |
+
the number of times it is covered/discussed/count_of_paragraphs.
|
73 |
+
"""
|
74 |
+
logging.info("Working on GHG Extraction")
|
75 |
+
haystack_doc['GHG Label'] = 'NA'
|
76 |
+
haystack_doc['GHG Score'] = 0.0
|
77 |
+
# applying GHG Identifier to only 'Target' paragraphs.
|
78 |
+
temp = haystack_doc[haystack_doc['Target Label'] == 'TARGET']
|
79 |
+
temp = temp.reset_index(drop=True)
|
80 |
+
df = haystack_doc[haystack_doc['Target Label'] == 'NEGATIVE']
|
81 |
+
df = df.reset_index(drop=True)
|
82 |
+
|
83 |
+
if not classifier_model:
|
84 |
+
classifier_model = st.session_state['ghg_classifier']
|
85 |
+
|
86 |
+
results = classifier_model(list(temp.text))
|
87 |
+
labels_= [(l[0]['label'],l[0]['score']) for l in results]
|
88 |
+
temp['GHG Label'],temp['GHG Score'] = zip(*labels_)
|
89 |
+
temp['GHG Label'] = temp['GHG Label'].apply(lambda x: _lab_dict[x])
|
90 |
+
# merge back Target and non-Target dataframe
|
91 |
+
df = pd.concat([df,temp])
|
92 |
+
df = df.reset_index(drop =True)
|
93 |
+
df['GHG Score'] = df['GHG Score'].round(2)
|
94 |
+
df.index += 1
|
95 |
+
|
96 |
+
return df
|
utils/indicator_classifier.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from typing_extensions import Literal
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import DataFrame, Series
|
6 |
+
from utils.config import getconfig
|
7 |
+
from utils.preprocessing import processingpipeline
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
|
12 |
+
@st.cache_resource
|
13 |
+
def load_indicatorClassifier(config_file:str = None, classifier_name:str = None):
|
14 |
+
"""
|
15 |
+
loads the document classifier using haystack, where the name/path of model
|
16 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
17 |
+
model should be passed.
|
18 |
+
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
19 |
+
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
20 |
+
Params
|
21 |
+
--------
|
22 |
+
config_file: config file path from which to read the model name
|
23 |
+
classifier_name: if modelname is passed, it takes a priority if not \
|
24 |
+
found then will look for configfile, else raise error.
|
25 |
+
Return: document classifier model
|
26 |
+
"""
|
27 |
+
if not classifier_name:
|
28 |
+
if not config_file:
|
29 |
+
logging.warning("Pass either model name or config file")
|
30 |
+
return
|
31 |
+
else:
|
32 |
+
config = getconfig(config_file)
|
33 |
+
classifier_name = config.get('indicator','MODEL')
|
34 |
+
|
35 |
+
logging.info("Loading indicator classifier")
|
36 |
+
# we are using the pipeline as the model is multilabel and DocumentClassifier
|
37 |
+
# from Haystack doesnt support multilabel
|
38 |
+
# in pipeline we use 'sigmoid' to explicitly tell pipeline to make it multilabel
|
39 |
+
# if not then it will automatically use softmax, which is not a desired thing.
|
40 |
+
# doc_classifier = TransformersDocumentClassifier(
|
41 |
+
# model_name_or_path=classifier_name,
|
42 |
+
# task="text-classification",
|
43 |
+
# top_k = None)
|
44 |
+
|
45 |
+
doc_classifier = pipeline("text-classification",
|
46 |
+
model=classifier_name,
|
47 |
+
return_all_scores=True,
|
48 |
+
function_to_apply= "sigmoid")
|
49 |
+
|
50 |
+
return doc_classifier
|
51 |
+
|
52 |
+
|
53 |
+
@st.cache_data
|
54 |
+
def indicator_classification(haystack_doc:pd.DataFrame,
|
55 |
+
threshold:float = 0.5,
|
56 |
+
classifier_model:pipeline= None
|
57 |
+
)->Tuple[DataFrame,Series]:
|
58 |
+
"""
|
59 |
+
Text-Classification on the list of texts provided. Classifier provides the
|
60 |
+
most appropriate label for each text. these labels are in terms of if text
|
61 |
+
belongs to which particular Sustainable Devleopment Goal (SDG).
|
62 |
+
Params
|
63 |
+
---------
|
64 |
+
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
65 |
+
contains the list of paragraphs in different format,here the list of
|
66 |
+
Haystack Documents is used.
|
67 |
+
threshold: threshold value for the model to keep the results from classifier
|
68 |
+
classifiermodel: you can pass the classifier model directly,which takes priority
|
69 |
+
however if not then looks for model in streamlit session.
|
70 |
+
In case of streamlit avoid passing the model directly.
|
71 |
+
Returns
|
72 |
+
----------
|
73 |
+
df: Dataframe with two columns['SDG:int', 'text']
|
74 |
+
x: Series object with the unique SDG covered in the document uploaded and
|
75 |
+
the number of times it is covered/discussed/count_of_paragraphs.
|
76 |
+
"""
|
77 |
+
logging.info("Working on Indicator Identification")
|
78 |
+
haystack_doc['Indicator Label'] = 'NA'
|
79 |
+
haystack_doc['PA_check'] = haystack_doc['Policy-Action Label'].apply(lambda x: True if len(x) != 0 else False)
|
80 |
+
|
81 |
+
df1 = haystack_doc[haystack_doc['PA_check'] == True]
|
82 |
+
df = haystack_doc[haystack_doc['PA_check'] == False]
|
83 |
+
if not classifier_model:
|
84 |
+
classifier_model = st.session_state['indicator_classifier']
|
85 |
+
|
86 |
+
predictions = classifier_model(list(df1.text))
|
87 |
+
|
88 |
+
list_ = []
|
89 |
+
for i in range(len(predictions)):
|
90 |
+
|
91 |
+
temp = predictions[i]
|
92 |
+
placeholder = {}
|
93 |
+
for j in range(len(temp)):
|
94 |
+
placeholder[temp[j]['label']] = temp[j]['score']
|
95 |
+
list_.append(placeholder)
|
96 |
+
labels_ = [{**list_[l]} for l in range(len(predictions))]
|
97 |
+
truth_df = DataFrame.from_dict(labels_)
|
98 |
+
truth_df = truth_df.round(2)
|
99 |
+
truth_df = truth_df.astype(float) >= threshold
|
100 |
+
truth_df = truth_df.astype(str)
|
101 |
+
categories = list(truth_df.columns)
|
102 |
+
truth_df['Indicator Label'] = truth_df.apply(lambda x: {i if x[i]=='True' else
|
103 |
+
None for i in categories}, axis=1)
|
104 |
+
truth_df['Indicator Label'] = truth_df.apply(lambda x: list(x['Indicator Label']
|
105 |
+
-{None}),axis=1)
|
106 |
+
df1['Indicator Label'] = list(truth_df['Indicator Label'])
|
107 |
+
df = pd.concat([df,df1])
|
108 |
+
df = df.drop(columns = ['PA_check'])
|
109 |
+
return df
|
utils/netzero_classifier.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from typing_extensions import Literal
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import DataFrame, Series
|
6 |
+
from utils.config import getconfig
|
7 |
+
from utils.preprocessing import processingpipeline
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
# Labels dictionary ###
|
12 |
+
_lab_dict = {
|
13 |
+
'NEGATIVE':'NO NETZERO TARGET',
|
14 |
+
'NETZERO':'NETZERO TARGET',
|
15 |
+
}
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def load_netzeroClassifier(config_file:str = None, classifier_name:str = None):
|
19 |
+
"""
|
20 |
+
loads the document classifier using haystack, where the name/path of model
|
21 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
22 |
+
model should be passed.
|
23 |
+
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
24 |
+
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
25 |
+
Params
|
26 |
+
--------
|
27 |
+
config_file: config file path from which to read the model name
|
28 |
+
classifier_name: if modelname is passed, it takes a priority if not \
|
29 |
+
found then will look for configfile, else raise error.
|
30 |
+
Return: document classifier model
|
31 |
+
"""
|
32 |
+
if not classifier_name:
|
33 |
+
if not config_file:
|
34 |
+
logging.warning("Pass either model name or config file")
|
35 |
+
return
|
36 |
+
else:
|
37 |
+
config = getconfig(config_file)
|
38 |
+
classifier_name = config.get('netzero','MODEL')
|
39 |
+
|
40 |
+
logging.info("Loading netzero classifier")
|
41 |
+
doc_classifier = pipeline("text-classification",
|
42 |
+
model=classifier_name,
|
43 |
+
top_k =1)
|
44 |
+
|
45 |
+
return doc_classifier
|
46 |
+
|
47 |
+
|
48 |
+
@st.cache_data
|
49 |
+
def netzero_classification(haystack_doc:pd.DataFrame,
|
50 |
+
threshold:float = 0.8,
|
51 |
+
classifier_model:pipeline= None
|
52 |
+
)->Tuple[DataFrame,Series]:
|
53 |
+
"""
|
54 |
+
Text-Classification on the list of texts provided. Classifier provides the
|
55 |
+
most appropriate label for each text. these labels are in terms of if text
|
56 |
+
belongs to which particular Sustainable Devleopment Goal (SDG).
|
57 |
+
Params
|
58 |
+
---------
|
59 |
+
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
60 |
+
contains the list of paragraphs in different format,here the list of
|
61 |
+
Haystack Documents is used.
|
62 |
+
threshold: threshold value for the model to keep the results from classifier
|
63 |
+
classifiermodel: you can pass the classifier model directly,which takes priority
|
64 |
+
however if not then looks for model in streamlit session.
|
65 |
+
In case of streamlit avoid passing the model directly.
|
66 |
+
Returns
|
67 |
+
----------
|
68 |
+
df: Dataframe with two columns['SDG:int', 'text']
|
69 |
+
x: Series object with the unique SDG covered in the document uploaded and
|
70 |
+
the number of times it is covered/discussed/count_of_paragraphs.
|
71 |
+
"""
|
72 |
+
logging.info("Working on Netzero Extraction")
|
73 |
+
haystack_doc['Netzero Label'] = 'NA'
|
74 |
+
haystack_doc['Netzero Score'] = 'NA'
|
75 |
+
temp = haystack_doc[haystack_doc['Target Label'] == 'TARGET']
|
76 |
+
df = haystack_doc[haystack_doc['Target Label'] == 'NEGATIVE']
|
77 |
+
|
78 |
+
if not classifier_model:
|
79 |
+
classifier_model = st.session_state['netzero_classifier']
|
80 |
+
|
81 |
+
results = classifier_model(list(temp.text))
|
82 |
+
labels_= [(l[0]['label'],l[0]['score']) for l in results]
|
83 |
+
temp['Netzero Label'],temp['Netzero Score'] = zip(*labels_)
|
84 |
+
df = pd.concat([df,temp])
|
85 |
+
df = df.reset_index(drop =True)
|
86 |
+
df.index += 1
|
87 |
+
|
88 |
+
return df
|
utils/policyaction_classifier.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from typing_extensions import Literal
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import DataFrame, Series
|
6 |
+
from utils.config import getconfig
|
7 |
+
from utils.preprocessing import processingpipeline
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
## Labels dictionary ###
|
12 |
+
_lab_dict = {
|
13 |
+
'NEGATIVE':'NO TARGET INFO',
|
14 |
+
'TARGET':'TARGET',
|
15 |
+
}
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def load_policyactionClassifier(config_file:str = None, classifier_name:str = None):
|
19 |
+
"""
|
20 |
+
loads the document classifier using haystack, where the name/path of model
|
21 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
22 |
+
model should be passed.
|
23 |
+
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
24 |
+
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
25 |
+
Params
|
26 |
+
--------
|
27 |
+
config_file: config file path from which to read the model name
|
28 |
+
classifier_name: if modelname is passed, it takes a priority if not \
|
29 |
+
found then will look for configfile, else raise error.
|
30 |
+
Return: document classifier model
|
31 |
+
"""
|
32 |
+
if not classifier_name:
|
33 |
+
if not config_file:
|
34 |
+
logging.warning("Pass either model name or config file")
|
35 |
+
return
|
36 |
+
else:
|
37 |
+
config = getconfig(config_file)
|
38 |
+
classifier_name = config.get('policyaction','MODEL')
|
39 |
+
|
40 |
+
logging.info("Loading classifier")
|
41 |
+
|
42 |
+
doc_classifier = pipeline("text-classification",
|
43 |
+
model=classifier_name,
|
44 |
+
return_all_scores=True,
|
45 |
+
function_to_apply= "sigmoid")
|
46 |
+
|
47 |
+
return doc_classifier
|
48 |
+
|
49 |
+
|
50 |
+
@st.cache_data
|
51 |
+
def policyaction_classification(haystack_doc:pd.DataFrame,
|
52 |
+
threshold:float = 0.5,
|
53 |
+
classifier_model:pipeline= None
|
54 |
+
)->Tuple[DataFrame,Series]:
|
55 |
+
"""
|
56 |
+
Text-Classification on the list of texts provided. Classifier provides the
|
57 |
+
most appropriate label for each text. these labels are in terms of if text
|
58 |
+
belongs to which particular Sustainable Devleopment Goal (SDG).
|
59 |
+
Params
|
60 |
+
---------
|
61 |
+
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
62 |
+
contains the list of paragraphs in different format,here the list of
|
63 |
+
Haystack Documents is used.
|
64 |
+
threshold: threshold value for the model to keep the results from classifier
|
65 |
+
classifiermodel: you can pass the classifier model directly,which takes priority
|
66 |
+
however if not then looks for model in streamlit session.
|
67 |
+
In case of streamlit avoid passing the model directly.
|
68 |
+
Returns
|
69 |
+
----------
|
70 |
+
df: Dataframe with two columns['SDG:int', 'text']
|
71 |
+
x: Series object with the unique SDG covered in the document uploaded and
|
72 |
+
the number of times it is covered/discussed/count_of_paragraphs.
|
73 |
+
"""
|
74 |
+
logging.info("Working on Policy/Action. Extraction")
|
75 |
+
haystack_doc['Policy-Action Label'] = 'NA'
|
76 |
+
if not classifier_model:
|
77 |
+
classifier_model = st.session_state['policyaction_classifier']
|
78 |
+
|
79 |
+
predictions = classifier_model(list(haystack_doc.text))
|
80 |
+
list_ = []
|
81 |
+
for i in range(len(predictions)):
|
82 |
+
|
83 |
+
temp = predictions[i]
|
84 |
+
placeholder = {}
|
85 |
+
for j in range(len(temp)):
|
86 |
+
placeholder[temp[j]['label']] = temp[j]['score']
|
87 |
+
list_.append(placeholder)
|
88 |
+
labels_ = [{**list_[l]} for l in range(len(predictions))]
|
89 |
+
truth_df = DataFrame.from_dict(labels_)
|
90 |
+
truth_df = truth_df.round(2)
|
91 |
+
truth_df = truth_df.astype(float) >= threshold
|
92 |
+
truth_df = truth_df.astype(str)
|
93 |
+
categories = list(truth_df.columns)
|
94 |
+
truth_df['Policy-Action Label'] = truth_df.apply(lambda x: {i if x[i]=='True'
|
95 |
+
else None for i in categories}, axis=1)
|
96 |
+
truth_df['Policy-Action Label'] = truth_df.apply(lambda x:
|
97 |
+
list(x['Policy-Action Label'] -{None}),axis=1)
|
98 |
+
|
99 |
+
haystack_doc['Policy-Action Label'] = list(truth_df['Policy-Action Label'])
|
100 |
+
|
101 |
+
return haystack_doc
|
utils/preprocessing.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from haystack.nodes.base import BaseComponent
|
2 |
+
from haystack.schema import Document
|
3 |
+
from haystack.nodes import PDFToTextOCRConverter, PDFToTextConverter
|
4 |
+
from haystack.nodes import TextConverter, DocxToTextConverter, PreProcessor
|
5 |
+
from typing import Callable, Dict, List, Optional, Text, Tuple, Union
|
6 |
+
from typing_extensions import Literal
|
7 |
+
import pandas as pd
|
8 |
+
import logging
|
9 |
+
import re
|
10 |
+
import string
|
11 |
+
from haystack.pipelines import Pipeline
|
12 |
+
|
13 |
+
def useOCR(file_path: str)-> Text:
|
14 |
+
"""
|
15 |
+
Converts image pdfs into text, Using the Farm-haystack[OCR]
|
16 |
+
|
17 |
+
Params
|
18 |
+
----------
|
19 |
+
file_path: file_path of uploade file, returned by add_upload function in
|
20 |
+
uploadAndExample.py
|
21 |
+
|
22 |
+
Returns the text file as string.
|
23 |
+
"""
|
24 |
+
|
25 |
+
|
26 |
+
converter = PDFToTextOCRConverter(remove_numeric_tables=True,
|
27 |
+
valid_languages=["eng"])
|
28 |
+
docs = converter.convert(file_path=file_path, meta=None)
|
29 |
+
return docs[0].content
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
class FileConverter(BaseComponent):
|
35 |
+
"""
|
36 |
+
Wrapper class to convert uploaded document into text by calling appropriate
|
37 |
+
Converter class, will use internally haystack PDFToTextOCR in case of image
|
38 |
+
pdf. Cannot use the FileClassifier from haystack as its doesnt has any
|
39 |
+
label/output class for image.
|
40 |
+
|
41 |
+
1. https://haystack.deepset.ai/pipeline_nodes/custom-nodes
|
42 |
+
2. https://docs.haystack.deepset.ai/docs/file_converters
|
43 |
+
3. https://github.com/deepset-ai/haystack/tree/main/haystack/nodes/file_converter
|
44 |
+
4. https://docs.haystack.deepset.ai/reference/file-converters-api
|
45 |
+
|
46 |
+
|
47 |
+
"""
|
48 |
+
|
49 |
+
outgoing_edges = 1
|
50 |
+
|
51 |
+
def run(self, file_name: str , file_path: str, encoding: Optional[str]=None,
|
52 |
+
id_hash_keys: Optional[List[str]] = None,
|
53 |
+
) -> Tuple[dict,str]:
|
54 |
+
""" this is required method to invoke the component in
|
55 |
+
the pipeline implementation.
|
56 |
+
|
57 |
+
Params
|
58 |
+
----------
|
59 |
+
file_name: name of file
|
60 |
+
file_path: file_path of uploade file, returned by add_upload function in
|
61 |
+
uploadAndExample.py
|
62 |
+
|
63 |
+
See the links provided in Class docstring/description to see other params
|
64 |
+
|
65 |
+
Return
|
66 |
+
---------
|
67 |
+
output: dictionary, with key as identifier and value could be anything
|
68 |
+
we need to return. In this case its the List of Hasyatck Document
|
69 |
+
|
70 |
+
output_1: As there is only one outgoing edge, we pass 'output_1' string
|
71 |
+
"""
|
72 |
+
try:
|
73 |
+
if file_name.endswith('.pdf'):
|
74 |
+
converter = PDFToTextConverter(remove_numeric_tables=True)
|
75 |
+
if file_name.endswith('.txt'):
|
76 |
+
converter = TextConverter(remove_numeric_tables=True)
|
77 |
+
if file_name.endswith('.docx'):
|
78 |
+
converter = DocxToTextConverter()
|
79 |
+
except Exception as e:
|
80 |
+
logging.error(e)
|
81 |
+
return
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
documents = []
|
86 |
+
|
87 |
+
|
88 |
+
# encoding is empty, probably should be utf-8
|
89 |
+
document = converter.convert(
|
90 |
+
file_path=file_path, meta=None,
|
91 |
+
encoding=encoding, id_hash_keys=id_hash_keys
|
92 |
+
)[0]
|
93 |
+
|
94 |
+
text = document.content
|
95 |
+
|
96 |
+
# in case of scanned/images only PDF the content might contain only
|
97 |
+
# the page separator (\f or \x0c). We check if is so and use
|
98 |
+
# use the OCR to get the text.
|
99 |
+
filtered = re.sub(r'\x0c', '', text)
|
100 |
+
|
101 |
+
if filtered == "":
|
102 |
+
logging.info("Using OCR")
|
103 |
+
text = useOCR(file_path)
|
104 |
+
|
105 |
+
documents.append(Document(content=text,
|
106 |
+
meta={"name": file_name},
|
107 |
+
id_hash_keys=id_hash_keys))
|
108 |
+
|
109 |
+
logging.info('file conversion succesful')
|
110 |
+
output = {'documents': documents}
|
111 |
+
return output, 'output_1'
|
112 |
+
|
113 |
+
def run_batch():
|
114 |
+
"""
|
115 |
+
we dont have requirement to process the multiple files in one go
|
116 |
+
therefore nothing here, however to use the custom node we need to have
|
117 |
+
this method for the class.
|
118 |
+
"""
|
119 |
+
|
120 |
+
return
|
121 |
+
|
122 |
+
|
123 |
+
def basic(s:str, remove_punc:bool = False):
|
124 |
+
|
125 |
+
"""
|
126 |
+
Performs basic cleaning of text.
|
127 |
+
|
128 |
+
Params
|
129 |
+
----------
|
130 |
+
s: string to be processed
|
131 |
+
removePunc: to remove all Punctuation including ',' and '.' or not
|
132 |
+
|
133 |
+
Returns: processed string: see comments in the source code for more info
|
134 |
+
"""
|
135 |
+
|
136 |
+
# Remove URLs
|
137 |
+
s = re.sub(r'^https?:\/\/.*[\r\n]*', ' ', s, flags=re.MULTILINE)
|
138 |
+
s = re.sub(r"http\S+", " ", s)
|
139 |
+
|
140 |
+
# Remove new line characters
|
141 |
+
s = re.sub('\n', ' ', s)
|
142 |
+
|
143 |
+
# Remove punctuations
|
144 |
+
if remove_punc == True:
|
145 |
+
translator = str.maketrans(' ', ' ', string.punctuation)
|
146 |
+
s = s.translate(translator)
|
147 |
+
# Remove distracting single quotes and dotted pattern
|
148 |
+
s = re.sub("\'", " ", s)
|
149 |
+
s = s.replace("..","")
|
150 |
+
|
151 |
+
return s.strip()
|
152 |
+
|
153 |
+
def paraLengthCheck(paraList, max_len = 100):
|
154 |
+
"""
|
155 |
+
There are cases where preprocessor cannot respect word limit, when using
|
156 |
+
respect sentence boundary flag due to missing sentence boundaries.
|
157 |
+
Therefore we run one more round of split here for those paragraphs
|
158 |
+
|
159 |
+
Params
|
160 |
+
---------------
|
161 |
+
paraList : list of paragraphs/text
|
162 |
+
max_len : max length to be respected by sentences which bypassed
|
163 |
+
preprocessor strategy
|
164 |
+
|
165 |
+
"""
|
166 |
+
new_para_list = []
|
167 |
+
for passage in paraList:
|
168 |
+
# check if para exceeds words limit
|
169 |
+
if len(passage.content.split()) > max_len:
|
170 |
+
# we might need few iterations example if para = 512 tokens
|
171 |
+
# we need to iterate 5 times to reduce para to size limit of '100'
|
172 |
+
iterations = int(len(passage.content.split())/max_len)
|
173 |
+
for i in range(iterations):
|
174 |
+
temp = " ".join(passage.content.split()[max_len*i:max_len*(i+1)])
|
175 |
+
new_para_list.append((temp,passage.meta['page']))
|
176 |
+
temp = " ".join(passage.content.split()[max_len*(i+1):])
|
177 |
+
new_para_list.append((temp,passage.meta['page']))
|
178 |
+
else:
|
179 |
+
# paragraphs which dont need any splitting
|
180 |
+
new_para_list.append((passage.content, passage.meta['page']))
|
181 |
+
|
182 |
+
logging.info("New paragraphs length {}".format(len(new_para_list)))
|
183 |
+
return new_para_list
|
184 |
+
|
185 |
+
class UdfPreProcessor(BaseComponent):
|
186 |
+
"""
|
187 |
+
class to preprocess the document returned by FileConverter. It will check
|
188 |
+
for splitting strategy and splits the document by word or sentences and then
|
189 |
+
synthetically create the paragraphs.
|
190 |
+
|
191 |
+
1. https://docs.haystack.deepset.ai/docs/preprocessor
|
192 |
+
2. https://docs.haystack.deepset.ai/reference/preprocessor-api
|
193 |
+
3. https://github.com/deepset-ai/haystack/tree/main/haystack/nodes/preprocessor
|
194 |
+
|
195 |
+
"""
|
196 |
+
outgoing_edges = 1
|
197 |
+
|
198 |
+
def run(self, documents:List[Document], remove_punc:bool=False,
|
199 |
+
split_by: Literal["sentence", "word"] = 'sentence',
|
200 |
+
split_length:int = 2, split_respect_sentence_boundary:bool = False,
|
201 |
+
split_overlap:int = 0):
|
202 |
+
|
203 |
+
""" this is required method to invoke the component in
|
204 |
+
the pipeline implementation.
|
205 |
+
|
206 |
+
Params
|
207 |
+
----------
|
208 |
+
documents: documents from the output dictionary returned by Fileconverter
|
209 |
+
remove_punc: to remove all Punctuation including ',' and '.' or not
|
210 |
+
split_by: document splitting strategy either as word or sentence
|
211 |
+
split_length: when synthetically creating the paragrpahs from document,
|
212 |
+
it defines the length of paragraph.
|
213 |
+
split_respect_sentence_boundary: Used when using 'word' strategy for
|
214 |
+
splititng of text.
|
215 |
+
split_overlap: Number of words or sentences that overlap when creating
|
216 |
+
the paragraphs. This is done as one sentence or 'some words' make sense
|
217 |
+
when read in together with others. Therefore the overlap is used.
|
218 |
+
|
219 |
+
Return
|
220 |
+
---------
|
221 |
+
output: dictionary, with key as identifier and value could be anything
|
222 |
+
we need to return. In this case the output will contain 4 objects
|
223 |
+
the paragraphs text list as List, Haystack document, Dataframe and
|
224 |
+
one raw text file.
|
225 |
+
|
226 |
+
output_1: As there is only one outgoing edge, we pass 'output_1' string
|
227 |
+
|
228 |
+
"""
|
229 |
+
|
230 |
+
if split_by == 'sentence':
|
231 |
+
split_respect_sentence_boundary = False
|
232 |
+
|
233 |
+
else:
|
234 |
+
split_respect_sentence_boundary = split_respect_sentence_boundary
|
235 |
+
|
236 |
+
preprocessor = PreProcessor(
|
237 |
+
clean_empty_lines=True,
|
238 |
+
clean_whitespace=True,
|
239 |
+
clean_header_footer=True,
|
240 |
+
split_by=split_by,
|
241 |
+
split_length=split_length,
|
242 |
+
split_respect_sentence_boundary= split_respect_sentence_boundary,
|
243 |
+
split_overlap=split_overlap,
|
244 |
+
|
245 |
+
# will add page number only in case of PDF not for text/docx file.
|
246 |
+
add_page_number=True
|
247 |
+
)
|
248 |
+
|
249 |
+
for i in documents:
|
250 |
+
# # basic cleaning before passing it to preprocessor.
|
251 |
+
# i = basic(i)
|
252 |
+
docs_processed = preprocessor.process([i])
|
253 |
+
for item in docs_processed:
|
254 |
+
item.content = basic(item.content, remove_punc= remove_punc)
|
255 |
+
|
256 |
+
df = pd.DataFrame(docs_processed)
|
257 |
+
all_text = " ".join(df.content.to_list())
|
258 |
+
para_list = df.content.to_list()
|
259 |
+
logging.info('document split into {} paragraphs'.format(len(para_list)))
|
260 |
+
output = {'documents': docs_processed,
|
261 |
+
'dataframe': df,
|
262 |
+
'text': all_text,
|
263 |
+
'paraList': para_list
|
264 |
+
}
|
265 |
+
return output, "output_1"
|
266 |
+
def run_batch():
|
267 |
+
"""
|
268 |
+
we dont have requirement to process the multiple files in one go
|
269 |
+
therefore nothing here, however to use the custom node we need to have
|
270 |
+
this method for the class.
|
271 |
+
"""
|
272 |
+
return
|
273 |
+
|
274 |
+
def processingpipeline():
|
275 |
+
"""
|
276 |
+
Returns the preprocessing pipeline. Will use FileConverter and UdfPreProcesor
|
277 |
+
from utils.preprocessing
|
278 |
+
|
279 |
+
"""
|
280 |
+
|
281 |
+
preprocessing_pipeline = Pipeline()
|
282 |
+
file_converter = FileConverter()
|
283 |
+
custom_preprocessor = UdfPreProcessor()
|
284 |
+
|
285 |
+
preprocessing_pipeline.add_node(component=file_converter,
|
286 |
+
name="FileConverter", inputs=["File"])
|
287 |
+
preprocessing_pipeline.add_node(component = custom_preprocessor,
|
288 |
+
name ='UdfPreProcessor', inputs=["FileConverter"])
|
289 |
+
|
290 |
+
return preprocessing_pipeline
|
291 |
+
|
utils/sector_classifier.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from typing_extensions import Literal
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import DataFrame, Series
|
6 |
+
from utils.config import getconfig
|
7 |
+
from utils.preprocessing import processingpipeline
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
|
12 |
+
@st.cache_resource
|
13 |
+
def load_sectorClassifier(config_file:str = None, classifier_name:str = None):
|
14 |
+
"""
|
15 |
+
loads the document classifier using haystack, where the name/path of model
|
16 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
17 |
+
model should be passed.
|
18 |
+
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
19 |
+
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
20 |
+
Params
|
21 |
+
--------
|
22 |
+
config_file: config file path from which to read the model name
|
23 |
+
classifier_name: if modelname is passed, it takes a priority if not \
|
24 |
+
found then will look for configfile, else raise error.
|
25 |
+
Return: document classifier model
|
26 |
+
"""
|
27 |
+
if not classifier_name:
|
28 |
+
if not config_file:
|
29 |
+
logging.warning("Pass either model name or config file")
|
30 |
+
return
|
31 |
+
else:
|
32 |
+
config = getconfig(config_file)
|
33 |
+
classifier_name = config.get('sector','MODEL')
|
34 |
+
|
35 |
+
logging.info("Loading sector classifier")
|
36 |
+
# we are using the pipeline as the model is multilabel and DocumentClassifier
|
37 |
+
# from Haystack doesnt support multilabel
|
38 |
+
# in pipeline we use 'sigmoid' to explicitly tell pipeline to make it multilabel
|
39 |
+
# if not then it will automatically use softmax, which is not a desired thing.
|
40 |
+
# doc_classifier = TransformersDocumentClassifier(
|
41 |
+
# model_name_or_path=classifier_name,
|
42 |
+
# task="text-classification",
|
43 |
+
# top_k = None)
|
44 |
+
|
45 |
+
doc_classifier = pipeline("text-classification",
|
46 |
+
model=classifier_name,
|
47 |
+
return_all_scores=True,
|
48 |
+
function_to_apply= "sigmoid")
|
49 |
+
|
50 |
+
return doc_classifier
|
51 |
+
|
52 |
+
|
53 |
+
@st.cache_data
|
54 |
+
def sector_classification(haystack_doc:pd.DataFrame,
|
55 |
+
threshold:float = 0.5,
|
56 |
+
classifier_model:pipeline= None
|
57 |
+
)->Tuple[DataFrame,Series]:
|
58 |
+
"""
|
59 |
+
Text-Classification on the list of texts provided. Classifier provides the
|
60 |
+
most appropriate label for each text. these labels are in terms of if text
|
61 |
+
belongs to which particular Sustainable Devleopment Goal (SDG).
|
62 |
+
Params
|
63 |
+
---------
|
64 |
+
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
65 |
+
contains the list of paragraphs in different format,here the list of
|
66 |
+
Haystack Documents is used.
|
67 |
+
threshold: threshold value for the model to keep the results from classifier
|
68 |
+
classifiermodel: you can pass the classifier model directly,which takes priority
|
69 |
+
however if not then looks for model in streamlit session.
|
70 |
+
In case of streamlit avoid passing the model directly.
|
71 |
+
Returns
|
72 |
+
----------
|
73 |
+
df: Dataframe with two columns['SDG:int', 'text']
|
74 |
+
x: Series object with the unique SDG covered in the document uploaded and
|
75 |
+
the number of times it is covered/discussed/count_of_paragraphs.
|
76 |
+
"""
|
77 |
+
logging.info("Working on Sector Identification")
|
78 |
+
haystack_doc['Sector Label'] = 'NA'
|
79 |
+
# df1 = haystack_doc[haystack_doc['Target Label'] == 'TARGET']
|
80 |
+
# df = haystack_doc[haystack_doc['Target Label'] == 'NEGATIVE']
|
81 |
+
if not classifier_model:
|
82 |
+
classifier_model = st.session_state['sector_classifier']
|
83 |
+
|
84 |
+
predictions = classifier_model(list(haystack_doc.text))
|
85 |
+
|
86 |
+
list_ = []
|
87 |
+
for i in range(len(predictions)):
|
88 |
+
|
89 |
+
temp = predictions[i]
|
90 |
+
placeholder = {}
|
91 |
+
for j in range(len(temp)):
|
92 |
+
placeholder[temp[j]['label']] = temp[j]['score']
|
93 |
+
list_.append(placeholder)
|
94 |
+
labels_ = [{**list_[l]} for l in range(len(predictions))]
|
95 |
+
truth_df = DataFrame.from_dict(labels_)
|
96 |
+
truth_df = truth_df.round(2)
|
97 |
+
truth_df = truth_df.astype(float) >= threshold
|
98 |
+
truth_df = truth_df.astype(str)
|
99 |
+
categories = list(truth_df.columns)
|
100 |
+
truth_df['Sector Label'] = truth_df.apply(lambda x: {i if x[i]=='True' else
|
101 |
+
None for i in categories}, axis=1)
|
102 |
+
truth_df['Sector Label'] = truth_df.apply(lambda x: list(x['Sector Label']
|
103 |
+
-{None}),axis=1)
|
104 |
+
haystack_doc['Sector Label'] = list(truth_df['Sector Label'])
|
105 |
+
# df = pd.concat([df,df1])
|
106 |
+
return haystack_doc
|
utils/target_classifier.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from typing_extensions import Literal
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import DataFrame, Series
|
6 |
+
from utils.config import getconfig
|
7 |
+
from utils.preprocessing import processingpipeline
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
## Labels dictionary ###
|
12 |
+
_lab_dict = {
|
13 |
+
'NEGATIVE':'NO TARGET INFO',
|
14 |
+
'TARGET':'TARGET',
|
15 |
+
}
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def load_targetClassifier(config_file:str = None, classifier_name:str = None):
|
19 |
+
"""
|
20 |
+
loads the document classifier using haystack, where the name/path of model
|
21 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
22 |
+
model should be passed.
|
23 |
+
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
24 |
+
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
25 |
+
Params
|
26 |
+
--------
|
27 |
+
config_file: config file path from which to read the model name
|
28 |
+
classifier_name: if modelname is passed, it takes a priority if not \
|
29 |
+
found then will look for configfile, else raise error.
|
30 |
+
Return: document classifier model
|
31 |
+
"""
|
32 |
+
if not classifier_name:
|
33 |
+
if not config_file:
|
34 |
+
logging.warning("Pass either model name or config file")
|
35 |
+
return
|
36 |
+
else:
|
37 |
+
config = getconfig(config_file)
|
38 |
+
classifier_name = config.get('target','MODEL')
|
39 |
+
|
40 |
+
logging.info("Loading classifier")
|
41 |
+
|
42 |
+
doc_classifier = pipeline("text-classification",
|
43 |
+
model=classifier_name,
|
44 |
+
top_k =1)
|
45 |
+
|
46 |
+
return doc_classifier
|
47 |
+
|
48 |
+
|
49 |
+
@st.cache_data
|
50 |
+
def target_classification(haystack_doc:pd.DataFrame,
|
51 |
+
threshold:float = 0.5,
|
52 |
+
classifier_model:pipeline= None
|
53 |
+
)->Tuple[DataFrame,Series]:
|
54 |
+
"""
|
55 |
+
Text-Classification on the list of texts provided. Classifier provides the
|
56 |
+
most appropriate label for each text. these labels are in terms of if text
|
57 |
+
belongs to which particular Sustainable Devleopment Goal (SDG).
|
58 |
+
Params
|
59 |
+
---------
|
60 |
+
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
61 |
+
contains the list of paragraphs in different format,here the list of
|
62 |
+
Haystack Documents is used.
|
63 |
+
threshold: threshold value for the model to keep the results from classifier
|
64 |
+
classifiermodel: you can pass the classifier model directly,which takes priority
|
65 |
+
however if not then looks for model in streamlit session.
|
66 |
+
In case of streamlit avoid passing the model directly.
|
67 |
+
Returns
|
68 |
+
----------
|
69 |
+
df: Dataframe with two columns['SDG:int', 'text']
|
70 |
+
x: Series object with the unique SDG covered in the document uploaded and
|
71 |
+
the number of times it is covered/discussed/count_of_paragraphs.
|
72 |
+
"""
|
73 |
+
logging.info("Working on Target Extraction")
|
74 |
+
if not classifier_model:
|
75 |
+
classifier_model = st.session_state['target_classifier']
|
76 |
+
|
77 |
+
results = classifier_model(list(haystack_doc.text))
|
78 |
+
labels_= [(l[0]['label'],
|
79 |
+
l[0]['score']) for l in results]
|
80 |
+
|
81 |
+
|
82 |
+
df1 = DataFrame(labels_, columns=["Target Label","Relevancy"])
|
83 |
+
df = pd.concat([haystack_doc,df1],axis=1)
|
84 |
+
|
85 |
+
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
|
86 |
+
df.index += 1
|
87 |
+
df['Label_def'] = df['Target Label'].apply(lambda i: _lab_dict[i])
|
88 |
+
|
89 |
+
return df
|
utils/uploadAndExample.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tempfile
|
3 |
+
import json
|
4 |
+
|
5 |
+
def add_upload(choice):
|
6 |
+
"""
|
7 |
+
Provdies the user with choice to either 'Upload Document' or 'Try Example'.
|
8 |
+
Based on user choice runs streamlit processes and save the path and name of
|
9 |
+
the 'file' to streamlit session_state which then can be fetched later.
|
10 |
+
|
11 |
+
"""
|
12 |
+
|
13 |
+
if choice == 'Upload Document':
|
14 |
+
|
15 |
+
# if 'filename' in st.session_state:
|
16 |
+
# Delete all the items in Session state
|
17 |
+
# for key in st.session_state.keys():
|
18 |
+
# del st.session_state[key]
|
19 |
+
|
20 |
+
uploaded_file = st.sidebar.file_uploader('Upload the File',
|
21 |
+
type=['pdf', 'docx', 'txt'])
|
22 |
+
if uploaded_file is not None:
|
23 |
+
with tempfile.NamedTemporaryFile(mode="wb", delete = False) as temp:
|
24 |
+
bytes_data = uploaded_file.getvalue()
|
25 |
+
temp.write(bytes_data)
|
26 |
+
st.session_state['filename'] = uploaded_file.name
|
27 |
+
st.session_state['filepath'] = temp.name
|
28 |
+
|
29 |
+
|
30 |
+
else:
|
31 |
+
# listing the options
|
32 |
+
with open('docStore/sample/files.json','r') as json_file:
|
33 |
+
files = json.load(json_file)
|
34 |
+
|
35 |
+
option = st.sidebar.selectbox('Select the example document',
|
36 |
+
list(files.keys()))
|
37 |
+
file_name = file_path = files[option]
|
38 |
+
st.session_state['filename'] = file_name
|
39 |
+
st.session_state['filepath'] = file_path
|