Spaces:
Sleeping
Sleeping
Upload utils_target_classifier.py
Browse files
utils/utils_target_classifier.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
from typing_extensions import Literal
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import DataFrame, Series
|
6 |
+
from utils.config import getconfig
|
7 |
+
from utils.preprocessing import processingpipeline
|
8 |
+
import streamlit as st
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
## Labels dictionary ###
|
12 |
+
_lab_dict = {
|
13 |
+
'NEGATIVE':'NO TARGET INFO',
|
14 |
+
'TARGET':'TARGET',
|
15 |
+
}
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def load_targetClassifier(config_file:str = None, classifier_name:str = None):
|
19 |
+
"""
|
20 |
+
loads the document classifier using haystack, where the name/path of model
|
21 |
+
in HF-hub as string is used to fetch the model object.Either configfile or
|
22 |
+
model should be passed.
|
23 |
+
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
|
24 |
+
2. https://docs.haystack.deepset.ai/docs/document_classifier
|
25 |
+
Params
|
26 |
+
--------
|
27 |
+
config_file: config file path from which to read the model name
|
28 |
+
classifier_name: if modelname is passed, it takes a priority if not \
|
29 |
+
found then will look for configfile, else raise error.
|
30 |
+
Return: document classifier model
|
31 |
+
"""
|
32 |
+
if not classifier_name:
|
33 |
+
if not config_file:
|
34 |
+
logging.warning("Pass either model name or config file")
|
35 |
+
return
|
36 |
+
else:
|
37 |
+
config = getconfig(config_file)
|
38 |
+
classifier_name = config.get('target','MODEL')
|
39 |
+
|
40 |
+
logging.info("Loading classifier")
|
41 |
+
|
42 |
+
doc_classifier = pipeline("text-classification",
|
43 |
+
model=classifier_name,
|
44 |
+
top_k =1)
|
45 |
+
|
46 |
+
return doc_classifier
|
47 |
+
|
48 |
+
|
49 |
+
@st.cache_data
|
50 |
+
def target_classification(haystack_doc:pd.DataFrame,
|
51 |
+
threshold:float = 0.5,
|
52 |
+
classifier_model:pipeline= None
|
53 |
+
)->Tuple[DataFrame,Series]:
|
54 |
+
"""
|
55 |
+
Text-Classification on the list of texts provided. Classifier provides the
|
56 |
+
most appropriate label for each text. these labels are in terms of if text
|
57 |
+
belongs to which particular Sustainable Devleopment Goal (SDG).
|
58 |
+
Params
|
59 |
+
---------
|
60 |
+
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
|
61 |
+
contains the list of paragraphs in different format,here the list of
|
62 |
+
Haystack Documents is used.
|
63 |
+
threshold: threshold value for the model to keep the results from classifier
|
64 |
+
classifiermodel: you can pass the classifier model directly,which takes priority
|
65 |
+
however if not then looks for model in streamlit session.
|
66 |
+
In case of streamlit avoid passing the model directly.
|
67 |
+
Returns
|
68 |
+
----------
|
69 |
+
df: Dataframe with two columns['SDG:int', 'text']
|
70 |
+
x: Series object with the unique SDG covered in the document uploaded and
|
71 |
+
the number of times it is covered/discussed/count_of_paragraphs.
|
72 |
+
"""
|
73 |
+
logging.info("Working on Target Extraction")
|
74 |
+
if not classifier_model:
|
75 |
+
classifier_model = st.session_state['target_classifier']
|
76 |
+
|
77 |
+
results = classifier_model(list(haystack_doc.text))
|
78 |
+
labels_= [(l[0]['label'],
|
79 |
+
l[0]['score']) for l in results]
|
80 |
+
|
81 |
+
|
82 |
+
df1 = DataFrame(labels_, columns=["Target Label","Target Score"])
|
83 |
+
df = pd.concat([haystack_doc,df1],axis=1)
|
84 |
+
|
85 |
+
df = df.sort_values(by="Target Score", ascending=False).reset_index(drop=True)
|
86 |
+
df['Target Score'] = df['Target Score'].round(2)
|
87 |
+
df.index += 1
|
88 |
+
# df['Label_def'] = df['Target Label'].apply(lambda i: _lab_dict[i])
|
89 |
+
|
90 |
+
return df
|