Spaces:
Sleeping
Sleeping
implements model
Browse files- README.md +2 -33
- cross_entropy_loss.py +20 -44
README.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
---
|
2 |
title: cross_entropy_loss
|
3 |
-
datasets:
|
4 |
-
|
5 |
tags:
|
6 |
- evaluate
|
7 |
- metric
|
8 |
-
description: "
|
9 |
sdk: gradio
|
10 |
sdk_version: 3.19.1
|
11 |
app_file: app.py
|
@@ -14,37 +13,7 @@ pinned: false
|
|
14 |
|
15 |
# Metric Card for cross_entropy_loss
|
16 |
|
17 |
-
***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
|
18 |
|
19 |
## Metric Description
|
20 |
-
*Give a brief overview of this metric, including what task(s) it is usually used for, if any.*
|
21 |
|
22 |
-
|
23 |
-
*Give general statement of how to use the metric*
|
24 |
-
|
25 |
-
*Provide simplest possible example for using the metric*
|
26 |
-
|
27 |
-
### Inputs
|
28 |
-
*List all input arguments in the format below*
|
29 |
-
- **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*
|
30 |
-
|
31 |
-
### Output Values
|
32 |
-
|
33 |
-
*Explain what this metric outputs and provide an example of what the metric output looks like. Modules should return a dictionary with one or multiple key-value pairs, e.g. {"bleu" : 6.02}*
|
34 |
-
|
35 |
-
*State the range of possible values that the metric's output can take, as well as what in that range is considered good. For example: "This metric can take on any value between 0 and 100, inclusive. Higher scores are better."*
|
36 |
-
|
37 |
-
#### Values from Popular Papers
|
38 |
-
*Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
|
39 |
-
|
40 |
-
### Examples
|
41 |
-
*Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*
|
42 |
-
|
43 |
-
## Limitations and Bias
|
44 |
-
*Note any known limitations or biases that the metric has, with links and references if possible.*
|
45 |
-
|
46 |
-
## Citation
|
47 |
-
*Cite the source where this metric was introduced.*
|
48 |
-
|
49 |
-
## Further References
|
50 |
-
*Add any useful further references.*
|
|
|
1 |
---
|
2 |
title: cross_entropy_loss
|
|
|
3 |
-
|
4 |
tags:
|
5 |
- evaluate
|
6 |
- metric
|
7 |
+
description: "computes the cross entropy loss"
|
8 |
sdk: gradio
|
9 |
sdk_version: 3.19.1
|
10 |
app_file: app.py
|
|
|
13 |
|
14 |
# Metric Card for cross_entropy_loss
|
15 |
|
|
|
16 |
|
17 |
## Metric Description
|
|
|
18 |
|
19 |
+
A simple metric that calculates cross-entropy loss. Created so that I can log losses from different training tasks within a Hugging Face trainer for multi-task training.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cross_entropy_loss.py
CHANGED
@@ -11,50 +11,30 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
"""
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
18 |
-
|
|
|
19 |
|
20 |
# TODO: Add BibTeX citation
|
21 |
-
_CITATION = """
|
22 |
-
@InProceedings{huggingface:module,
|
23 |
-
title = {A great new module},
|
24 |
-
authors={huggingface, Inc.},
|
25 |
-
year={2020}
|
26 |
-
}
|
27 |
"""
|
28 |
|
29 |
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
|
32 |
"""
|
33 |
|
34 |
|
35 |
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
|
38 |
-
|
39 |
-
predictions: list of predictions to score. Each predictions
|
40 |
-
should be a string with tokens separated by spaces.
|
41 |
-
references: list of reference for each prediction. Each
|
42 |
-
reference should be a string with tokens separated by spaces.
|
43 |
-
Returns:
|
44 |
-
accuracy: description of the first score,
|
45 |
-
another_score: description of the second score,
|
46 |
-
Examples:
|
47 |
-
Examples should be written in doctest format, and should illustrate how
|
48 |
-
to use the function.
|
49 |
-
|
50 |
-
>>> my_new_module = evaluate.load("my_new_module")
|
51 |
-
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
52 |
-
>>> print(results)
|
53 |
-
{'accuracy': 1.0}
|
54 |
"""
|
55 |
|
56 |
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
@@ -70,26 +50,22 @@ class cross_entropy_loss(evaluate.Metric):
|
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
-
features=datasets.Features(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
# Additional links to the codebase or references
|
80 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
82 |
)
|
83 |
|
84 |
-
|
85 |
-
"""Optional: download external resources useful to compute the scores"""
|
86 |
-
# TODO: Download external resources if needed
|
87 |
-
pass
|
88 |
|
89 |
-
def _compute(self,
|
90 |
"""Returns the scores"""
|
91 |
-
|
92 |
-
|
|
|
|
|
93 |
return {
|
94 |
-
"
|
95 |
}
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
"""Cross Entropy Loss Metric"""
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
18 |
+
import torch.nn.functional as F
|
19 |
+
import torch
|
20 |
|
21 |
# TODO: Add BibTeX citation
|
22 |
+
_CITATION = """
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
|
25 |
# TODO: Add description of the module here
|
26 |
_DESCRIPTION = """\
|
27 |
+
A simple metric that calculates cross-entropy loss. Created so that I can log losses from different training tasks within a Hugging Face trainer for multi-task training.
|
28 |
"""
|
29 |
|
30 |
|
31 |
# TODO: Add description of the arguments of the module here
|
32 |
_KWARGS_DESCRIPTION = """
|
33 |
+
prediction_scores: the logits
|
34 |
+
references: the labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"""
|
36 |
|
37 |
# TODO: Define external resources urls if needed
|
|
|
38 |
|
39 |
|
40 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
|
|
50 |
citation=_CITATION,
|
51 |
inputs_description=_KWARGS_DESCRIPTION,
|
52 |
# This defines the format of each prediction and reference
|
53 |
+
features=datasets.Features(
|
54 |
+
{
|
55 |
+
"prediction_scores": datasets.Sequence(datasets.Value("float")),
|
56 |
+
"references": datasets.Value("int32")
|
57 |
+
}
|
58 |
+
)
|
|
|
|
|
|
|
59 |
)
|
60 |
|
61 |
+
|
|
|
|
|
|
|
62 |
|
63 |
+
def _compute(self, prediction_scores, references):
|
64 |
"""Returns the scores"""
|
65 |
+
|
66 |
+
loss = F.cross_entropy(input=torch.from_numpy(prediction_scores).flatten(start_dim=0, end_dim=1),
|
67 |
+
target=torch.from_numpy(references).flatten(),
|
68 |
+
ignore_index=-100).item()
|
69 |
return {
|
70 |
+
"cross_entropy_loss": loss
|
71 |
}
|