File size: 12,817 Bytes
71e7434 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
"""Code for moss-sft"""
import os
import copy
import json
import torch
import logging
import argparse
import torch.distributed as dist
from tqdm import tqdm
from accelerate import Accelerator
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from transformers import set_seed, get_cosine_schedule_with_warmup
from transformers import AutoTokenizer, AutoModelForCausalLM
logger = logging.getLogger(__name__)
logging.basicConfig(level='INFO')
class SFTDataset(Dataset):
def __init__(self, data_dir, tokenizer, data_type='train'):
super().__init__()
self.data_dir = data_dir
self.tokenizer = tokenizer
self.data_type = data_type
self.data = []
# We do not calculate losses for the meta instruction or results returned by plugins
# The token spans with label -100, [(span_start, span_end), ...]
self.no_loss_spans = []
self.load_data()
def load_data(self):
logger.info("Loading data...")
data_file = os.path.join(self.data_dir, f'{self.data_type}_data')
no_loss_spans_file = os.path.join(self.data_dir, f'{self.data_type}_no_loss_spans')
if os.path.exists(data_file) and os.path.exists(no_loss_spans_file):
self.data = torch.load(data_file, map_location='cpu')
self.no_loss_spans = torch.load(no_loss_spans_file, map_location='cpu')
else:
with open(os.path.join(self.data_dir, f'{self.data_type}.jsonl'), 'r') as f:
for line in f:
sample = json.loads(line)
chat = sample['chat']
num_turns = int(sample['num_turns'])
meta_instruction = sample['meta_instruction']
instruction_ids = self.tokenizer.encode(meta_instruction)
assert isinstance(instruction_ids, list) and len(instruction_ids) > 0
input_ids = copy.deepcopy(instruction_ids)
no_loss_spans = [(0, len(instruction_ids))]
for i in range(num_turns):
cur_turn_ids = []
cur_no_loss_spans = []
cur_turn = chat[f'turn_{i+1}']
for key, value in cur_turn.items():
cur_ids = self.tokenizer.encode(value)
if key == 'Tool Responses':
# The format tokens (<|Results|>:...<eor>\n) should have losses.
cur_no_loss_spans.append((len(input_ids + cur_turn_ids) + 5, len(input_ids + cur_turn_ids + cur_ids) - 2))
assert isinstance(cur_ids, list) and len(cur_ids) > 0
cur_turn_ids.extend(cur_ids)
if len(input_ids + cur_turn_ids) > 2048:
break
input_ids.extend(cur_turn_ids)
no_loss_spans.extend(cur_no_loss_spans)
if len(input_ids) == len(instruction_ids):
continue
assert len(input_ids) > 0 and len(input_ids) <= 2048
self.data.append(input_ids)
self.no_loss_spans.append(no_loss_spans)
torch.save(self.data, data_file)
torch.save(self.no_loss_spans, no_loss_spans_file)
logger.info(f"Load data successfully, total {len(self.data)} training samples")
def __len__(self):
return len(self.data)
def __getitem__(self, index):
data = copy.deepcopy(self.data[index])
no_loss_spans = copy.deepcopy(self.no_loss_spans[index])
data = torch.tensor(data, dtype=torch.long)
attn_mask = torch.ones_like(data, dtype=torch.bool)
label = copy.deepcopy(data)
for no_loss_span in no_loss_spans:
label[no_loss_span[0] : no_loss_span[1]] = -100
return data, attn_mask, label
def collate_fn(self, batch):
batch_input_ids, batch_attn_mask, batch_labels = [], [], []
for input_ids, attn_mask, label in batch:
batch_input_ids.append(input_ids)
batch_attn_mask.append(attn_mask)
batch_labels.append(label)
batch_input_ids = torch.nn.utils.rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=self.tokenizer.eos_token_id)
batch_attn_mask = torch.nn.utils.rnn.pad_sequence(batch_attn_mask, batch_first=True, padding_value=0).to(torch.bool)
batch_labels = torch.nn.utils.rnn.pad_sequence(batch_labels, batch_first=True, padding_value=-100)
return batch_input_ids, batch_attn_mask, batch_labels
class SFTMetric:
def __init__(self, device):
self.n_step = 0
self.right = torch.Tensor([0]).to(device=device)
self.total = torch.Tensor([0]).to(device=device)
self.total_loss = torch.Tensor([0]).to(device=device)
self.world_size = dist.get_world_size()
def __call__(self, logits, labels, loss):
return self.update(logits, labels, loss)
def update(self, logits, labels, loss):
self.n_step += 1
with torch.no_grad():
shift_preds = logits[..., :-1, :].argmax(dim=-1)
shift_labels = labels[..., 1:]
self.right += (shift_preds == shift_labels).masked_fill(shift_labels.eq(-100), 0).sum().item()
self.total += (shift_labels != -100).sum().item()
self.total_loss += loss.item()
def get_metric(self, reset=True):
dist.all_reduce(self.right, op=torch.distributed.ReduceOp.SUM)
dist.all_reduce(self.total, op=torch.distributed.ReduceOp.SUM)
dist.all_reduce(self.total_loss, op=torch.distributed.ReduceOp.SUM)
acc = (self.right / self.total).item()
loss = self.total_loss.item() / (self.world_size * self.n_step)
if reset:
self.n_step = 0
self.right.fill_(0)
self.total.fill_(0)
self.total_loss.fill_(0)
return acc, loss
def train(args):
# deepspeed needs to know your gradient accumulation steps before hand, so don't forget to pass it
# Remember you still need to do gradient accumulation by yourself, just like you would have done without deepspeed
# deepspeed_plugin = DeepSpeedPlugin(zero_stage=3, gradient_accumulation_steps=1)
# deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = 2
accelerator = Accelerator(mixed_precision='fp16')
if accelerator.is_main_process:
writer = SummaryWriter(args.log_dir)
writer.add_hparams(vars(args), {})
accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = args.train_bsz_per_gpu
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True)
tokenizer.eos_token_id = 106068 # The eos_token_id of base model is 106028. We need map the eos token to <eom> (its token id is 106068)
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, trust_remote_code=True, use_cache=False)
model.transformer.gradient_checkpointing = True
assert model.transformer.gradient_checkpointing is True
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
train_dataset = SFTDataset(args.data_dir, tokenizer)
train_dataloader = DataLoader(train_dataset, batch_size=args.train_bsz_per_gpu, shuffle=True, drop_last=True, collate_fn=train_dataset.collate_fn)
val_dataset = SFTDataset(args.data_dir, tokenizer, data_type='val')
val_dataloader = DataLoader(val_dataset, batch_size=args.eval_bsz_per_gpu, shuffle=False, drop_last=True, collate_fn=train_dataset.collate_fn)
num_training_steps = (len(train_dataloader) * args.n_epochs) // accelerator.gradient_accumulation_steps
lr_scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=int(args.warmup_rates * num_training_steps), num_training_steps=num_training_steps)
model, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare(model, optimizer, train_dataloader, val_dataloader, lr_scheduler)
global_step = 0
metric = SFTMetric(device=torch.cuda.current_device())
model.train()
for epoch in range(args.n_epochs):
for batch_cnt, (input_ids, attention_mask, labels) in enumerate(train_dataloader):
if batch_cnt == 1 and epoch == 0:
torch.cuda.empty_cache()
optimizer.zero_grad()
output = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, return_dict=True)
loss = output.loss
metric(output.logits, labels, loss)
acc, train_loss = metric.get_metric()
accelerator.backward(loss)
optimizer.step()
if not accelerator.optimizer_step_was_skipped:
lr_scheduler.step()
global_step += 1
if accelerator.is_main_process:
accelerator.print(f"epoch: {epoch}, cureent step: {batch_cnt}, total step: {len(train_dataloader)}, skip:{accelerator.optimizer_step_was_skipped}, loss:{round(train_loss, 3)}, acc:{round(acc, 3)}, length:{len(input_ids[0])}, lr:{lr_scheduler.get_last_lr()[0]}")
if global_step % 3 == 0 and accelerator.is_main_process:
writer.add_scalar('skip', int(accelerator.optimizer_step_was_skipped), global_step=global_step)
writer.add_scalar('loss', train_loss, global_step=global_step)
writer.add_scalar('acc', acc, global_step=global_step)
writer.add_scalar('lr', lr_scheduler.get_last_lr()[0], global_step=global_step)
if global_step % args.eval_step == 0 or global_step == 1:
torch.cuda.empty_cache()
model.eval()
val_metric = SFTMetric(torch.cuda.current_device())
for input_ids, attention_mask, labels in val_dataloader:
with torch.no_grad():
output = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, return_dict=True)
val_metric(output.logits, labels, output.loss)
val_acc, val_loss = val_metric.get_metric()
if accelerator.is_local_main_process:
writer.add_scalar(f'val_loss', val_loss, global_step=global_step)
writer.add_scalar(f'val_acc', val_acc, global_step=global_step)
accelerator.print(f"Epoch: {epoch}, Step: {batch_cnt}, Val loss: {val_loss}, Val acc: {val_acc}")
model.train()
if global_step % args.save_step == 0:
model.save_checkpoint(args.output_dir, global_step)
if global_step % args.save_step != 0:
model.save_checkpoint(args.output_dir, global_step)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Args of sft')
# Model Args
parser.add_argument('--model_name_or_path', default='./ckpts/moss-16B-base', type=str)
# Data Args
parser.add_argument('--data_dir', default='./data/sft', type=str)
parser.add_argument('--output_dir', default='./ckpts/moss-16B-sft', type=str)
parser.add_argument('--log_dir', default='./train_logs/moss-16B-sft', type=str)
# Training Args
parser.add_argument('--max_seq_len', default=2048, type=int)
parser.add_argument('--train_bsz_per_gpu', default=4, type=int)
parser.add_argument('--eval_bsz_per_gpu', default=4, type=int)
parser.add_argument('--weight_decay', default=0.1, type=float)
parser.add_argument('--learning_rate', default=9e-6, type=float)
parser.add_argument('--warmup_rates', default=0.05, type=int)
parser.add_argument('--n_epochs', default=2, type=int)
# Other Args
parser.add_argument('--save_step', default=3000, type=int)
parser.add_argument('--eval_step', default=5, type=int)
parser.add_argument('--seed', default=42, type=int)
args = parser.parse_args()
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(args.output_dir, exist_ok=True)
set_seed(args.seed)
train(args)
|