pit / models_jittor /model.py
mu123567's picture
Upload 1153 files
612d32b
from functools import partial
from typing import Optional, Tuple, Union
import jittor as jt
import jittor.nn as nn
from jittor import Module
from .utils import NewGELUActivation
from .utils import (fixed_pos_embedding, apply_rotary_pos_emb, _init_weights,
get_head_mask)
class MossAttention(Module):
def __init__(self, config):
super(MossAttention, self).__init__()
max_positions = config.n_positions
self.register_buffer(
"causal_mask",
jt.tril(jt.ones((max_positions, max_positions), dtype=jt.bool)).view(
1, 1, max_positions, max_positions
),
)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.embed_dim = config.n_embd
self.num_attention_heads = config.n_head
self.head_dim = self.embed_dim // self.num_attention_heads
if self.head_dim * self.num_attention_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
f" `num_attention_heads`: {self.num_attention_heads})."
)
self.scale_attn = jt.sqrt(jt.float32(self.head_dim))
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
jt.float16
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.rotary_dim = None
if config.rotary_dim is not None:
self.rotary_dim = config.rotary_dim
def _split_heads(self, x, n_head, dim_head, mp_num):
reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
return reshaped
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into n_ctx
"""
if len(tensor.shape) == 5:
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
elif len(tensor.shape) == 4:
tensor = tensor.permute(0, 2, 1, 3).contiguous()
else:
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
return tensor.view(new_shape)
def _attn(
self,
query,
key,
value,
attention_mask=None,
head_mask=None,
):
# compute causal mask from causal mask buffer
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
# Keep the attention weights computation in fp32 to avoid overflow issues
query = query.to('float32')
key = key.to('float32')
attn_weights = jt.matmul(query, key.transpose(-1, -2))
attn_weights = attn_weights / self.scale_attn
mask_value = -3.4e38 # torch.finfo(attn_weights.dtype).min)
mask_value = jt.Var(mask_value).type_as(attn_weights)
attn_weights = jt.where(causal_mask, attn_weights, mask_value)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.Softmax(dim=-1)(attn_weights)
attn_weights = attn_weights.to(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = jt.matmul(attn_weights, value.float())
if jt.flags.amp_level >= 1:
attn_output = attn_output.half()
return attn_output, attn_weights
def execute(
self,
hidden_states: Optional[jt.Var],
attention_mask: Optional[jt.Var] = None,
layer_past: Optional[Tuple[jt.Var]] = None,
head_mask: Optional[jt.Var] = None,
use_cache: Optional[bool] = False,
) -> Union[
Tuple[jt.Var, Tuple[jt.Var]],
Optional[Tuple[jt.Var, Tuple[jt.Var], Tuple[jt.Var, ...]]],
]:
qkv = self.qkv_proj(hidden_states)
mp_num = 4
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
local_dim = self.head_dim * self.num_attention_heads // mp_num
query, value, key = jt.split(qkv_split, local_dim, dim=-1)
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
value = value.permute(0, 2, 1, 3)
seq_len = key.shape[1]
offset = 0
if layer_past is not None:
offset = layer_past[0].shape[-2]
seq_len += offset
if self.rotary_dim is not None:
k_rot = key[:, :, :, : self.rotary_dim]
k_pass = key[:, :, :, self.rotary_dim :]
q_rot = query[:, :, :, : self.rotary_dim]
q_pass = query[:, :, :, self.rotary_dim :]
sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)
key = jt.cat([k_rot, k_pass], dim=-1)
query = jt.cat([q_rot, q_pass], dim=-1)
else:
sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
key = apply_rotary_pos_emb(key, sincos, offset=offset)
query = apply_rotary_pos_emb(query, sincos, offset=offset)
key = key.permute(0, 2, 1, 3)
query = query.permute(0, 2, 1, 3)
if layer_past is not None:
past_key = layer_past[0]
past_value = layer_past[1]
key = jt.cat((past_key, key), dim=-2)
value = jt.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
# compute self-attention: V x Softmax(QK^T)
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
return outputs # a, present
class MossMLP(Module):
def __init__(self, intermediate_size, config):
# in MLP: intermediate_size= 4 * embed_dim
super(MossMLP, self).__init__()
embed_dim = config.n_embd
self.fc_in = nn.Linear(embed_dim, intermediate_size)
self.fc_out = nn.Linear(intermediate_size, embed_dim)
self.act = NewGELUActivation()
self.dropout = nn.Dropout(config.resid_pdrop)
def execute(self, hidden_states: Optional[jt.Var]) -> jt.Var:
hidden_states = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc_out(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class MossBlock(Module):
def __init__(self, config):
super(MossBlock, self).__init__()
self.config = config
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.attn = MossAttention(config)
self.mlp = MossMLP(inner_dim, config)
def execute(
self,
hidden_states: Optional[jt.Var],
layer_past: Optional[Tuple[jt.Var]] = None,
attention_mask: Optional[jt.Var] = None,
head_mask: Optional[jt.Var] = None,
use_cache: Optional[bool] = False,
) -> Union[Tuple[jt.Var], Optional[Tuple[jt.Var, Tuple[jt.Var, ...]]]]:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache
)
attn_output = attn_outputs[0] # output_attn: a, present
outputs = attn_outputs[1:]
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = attn_output + feed_forward_hidden_states + residual
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present
class MossModel(Module):
def __init__(self, config):
super(MossModel, self).__init__()
self.config = config
self.embed_dim = config.n_embd
self.vocab_size = config.vocab_size
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList([MossBlock(config) for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.n_head)
self.gradient_checkpointing = False
self.apply(partial(_init_weights, config))
def execute(
self,
input_ids: Optional[jt.Var] = None,
past_key_values: Optional[Tuple[Tuple[jt.Var]]] = None,
attention_mask: Optional[jt.Var] = None,
token_type_ids: Optional[jt.Var] = None,
position_ids: Optional[jt.Var] = None,
head_mask: Optional[jt.Var] = None,
inputs_embeds: Optional[jt.Var] = None,
use_cache: Optional[bool] = None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = jt.arange(past_length, input_shape[-1] + past_length, dtype='int64')
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# [batch_size, 1, 1, to_seq_length]
attention_mask = attention_mask[:, None, None, :]
if jt.flags.amp_level >= 3:
attention_mask = attention_mask.half() # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -65504.0
else:
# finfo.min
attention_mask = (1.0 - attention_mask) * -3.402e38
# n_layer x batch x num_attention_heads x N x N
head_mask = get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
hidden_states = inputs_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
presents = () if use_cache else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
use_cache=use_cache,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
return hidden_states, presents
class MossForCausalLM(Module):
def __init__(self, config):
super(MossForCausalLM, self).__init__()
self.config = config
self.transformer = MossModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
# Initialize weights and apply final processing
self.apply(partial(_init_weights, config))
def execute(
self,
input_ids: Optional[jt.Var] = None,
past_key_values: Optional[Tuple[Tuple[jt.Var]]] = None,
attention_mask: Optional[jt.Var] = None,
token_type_ids: Optional[jt.Var] = None,
position_ids: Optional[jt.Var] = None,
head_mask: Optional[jt.Var] = None,
inputs_embeds: Optional[jt.Var] = None,
labels: Optional[jt.Var] = None,
use_cache: Optional[bool] = None,
):
hidden_states, presents = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
)
lm_logits = self.lm_head(hidden_states).to('float32')
loss = None
if labels is not None:
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
loss = loss.to(hidden_states.dtype)
return dict(
loss=loss,
logits=lm_logits,
past_key_values=presents
)