File size: 2,348 Bytes
b7f426b
7e42f7f
b7f426b
7e42f7f
016c388
 
 
7e42f7f
016c388
 
 
042d9eb
016c388
 
 
 
 
 
 
 
 
042d9eb
016c388
 
 
 
 
 
b7f426b
016c388
 
 
 
 
 
 
 
 
 
5196faf
042d9eb
 
 
 
b7f426b
016c388
 
b7f426b
016c388
 
 
 
 
 
 
 
042d9eb
016c388
b7f426b
042d9eb
016c388
 
042d9eb
 
b7f426b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import gradio as gr
from huggingface_hub import InferenceClient

# Clients for both providers
llama_client = InferenceClient(provider="sambanova", api_key=os.environ["HF_TOKEN"])
minimax_client = InferenceClient(provider="novita", api_key=os.environ["HF_TOKEN"])

def chat_with_model(model_choice, prompt, image_url):
    if not prompt:
        return "Please enter a text prompt."

    try:
        if model_choice == "LLaMA 4 (SambaNova)":
            # Prepare message with optional image
            content = [{"type": "text", "text": prompt}]
            if image_url:
                content.append({
                    "type": "image_url",
                    "image_url": {"url": image_url}
                })

            messages = [{"role": "user", "content": content}]
            completion = llama_client.chat.completions.create(
                model="meta-llama/Llama-4-Maverick-17B-128E-Instruct",
                messages=messages
            )
            return completion.choices[0].message.content

        elif model_choice == "MiniMax M1 (Novita)":
            messages = [{"role": "user", "content": prompt}]
            completion = minimax_client.chat.completions.create(
                model="MiniMaxAI/MiniMax-M1-80k",
                messages=messages
            )
            return completion.choices[0].message.content

        else:
            return "Unsupported model selected."

    except Exception as e:
        return f"Error: {e}"

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("## 🤖 Multimodel Chatbot: LLaMA 4 & MiniMax M1")
    gr.Markdown("Choose a model, enter your prompt, and optionally add an image URL for LLaMA.")

    model_dropdown = gr.Dropdown(
        choices=["LLaMA 4 (SambaNova)", "MiniMax M1 (Novita)"],
        value="LLaMA 4 (SambaNova)",
        label="Select Model"
    )
    prompt_input = gr.Textbox(label="Text Prompt", placeholder="Ask something...", lines=2)
    image_url_input = gr.Textbox(label="Optional Image URL (for LLaMA only)", placeholder="https://example.com/image.jpg")
    
    submit_btn = gr.Button("Generate Response")
    output_box = gr.Textbox(label="Response", lines=8)

    submit_btn.click(
        fn=chat_with_model,
        inputs=[model_dropdown, prompt_input, image_url_input],
        outputs=output_box
    )

demo.launch()