File size: 3,641 Bytes
b7f426b 7e42f7f b7f426b a2dcfac 7e42f7f a2dcfac 016c388 725f763 7e42f7f a2dcfac 016c388 042d9eb 016c388 a2dcfac 016c388 b7f426b 016c388 725f763 016c388 042d9eb a2dcfac b7f426b a2dcfac 725f763 a2dcfac b7f426b a2dcfac b7f426b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import os
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline
# === Inference Clients ===
llama_client = InferenceClient(provider="sambanova", api_key=os.environ["HF_TOKEN"])
minimax_client = InferenceClient(provider="novita", api_key=os.environ["HF_TOKEN"])
mistral_client = InferenceClient(provider="together", api_key=os.environ["HF_TOKEN"])
# === ChartGPT pipeline ===
chart_pipe = pipeline("text2text-generation", model="yuan-tian/chartgpt-llama3")
# === Chat Handler ===
def chat_with_model(model_choice, prompt, image_url):
if not prompt:
return "Please enter a text prompt."
try:
if model_choice == "LLaMA 4 (SambaNova)":
content = [{"type": "text", "text": prompt}]
if image_url:
content.append({"type": "image_url", "image_url": {"url": image_url}})
messages = [{"role": "user", "content": content}]
completion = llama_client.chat.completions.create(
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct",
messages=messages
)
return completion.choices[0].message.content
elif model_choice == "MiniMax M1 (Novita)":
messages = [{"role": "user", "content": prompt}]
completion = minimax_client.chat.completions.create(
model="MiniMaxAI/MiniMax-M1-80k",
messages=messages
)
return completion.choices[0].message.content
elif model_choice == "Mistral Mixtral-8x7B (Together)":
messages = [{"role": "user", "content": prompt}]
completion = mistral_client.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
messages=messages
)
return completion.choices[0].message.content
else:
return "Unsupported model selected."
except Exception as e:
return f"Error: {e}"
# === ChartGPT Handler ===
def generate_chart_code(prompt):
try:
response = chart_pipe(prompt, max_new_tokens=512)[0]["generated_text"]
return response
except Exception as e:
return f"ChartGPT error: {e}"
# === Gradio UI ===
with gr.Blocks() as demo:
gr.Markdown("## π₯ Multi-Tool AI Space: Chat + Chart Generator")
with gr.Tabs():
with gr.Tab("π¬ Multimodel Chat"):
model_dropdown = gr.Dropdown(
choices=[
"LLaMA 4 (SambaNova)",
"MiniMax M1 (Novita)",
"Mistral Mixtral-8x7B (Together)"
],
value="LLaMA 4 (SambaNova)",
label="Select Model"
)
prompt_input = gr.Textbox(label="Text Prompt", placeholder="Ask something...", lines=2)
image_url_input = gr.Textbox(label="Optional Image URL (for LLaMA only)", placeholder="https://example.com/image.jpg")
submit_btn = gr.Button("Generate Response")
output_box = gr.Textbox(label="Response", lines=8)
submit_btn.click(chat_with_model, [model_dropdown, prompt_input, image_url_input], output_box)
with gr.Tab("π Chart Generator (ChartGPT)"):
chart_prompt = gr.Textbox(label="Enter data analysis prompt", placeholder="Generate a bar chart comparing 2023 sales in North America and Europe", lines=3)
chart_btn = gr.Button("Generate Chart Code")
chart_output = gr.Textbox(label="ChartGPT Code Output", lines=16)
chart_btn.click(generate_chart_code, chart_prompt, chart_output)
demo.launch()
|