Mubbashir Ahmed
commited on
Commit
Β·
dccb5da
1
Parent(s):
26fe788
added prompting
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import time
|
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import InferenceClient
|
6 |
from datasets import load_dataset
|
|
|
7 |
|
8 |
# ------------------------
|
9 |
# Auth
|
@@ -15,6 +16,22 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
15 |
# ------------------------
|
16 |
spider_dataset = load_dataset("spider", split="train")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# ------------------------
|
19 |
# Inference Clients
|
20 |
# ------------------------
|
@@ -33,9 +50,42 @@ model_list = {
|
|
33 |
}
|
34 |
|
35 |
# ------------------------
|
36 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# ------------------------
|
38 |
-
def evaluate_all_models(user_input, expected_sql, chat_history):
|
39 |
evaluations = []
|
40 |
full_chat_transcript = ""
|
41 |
|
@@ -43,22 +93,23 @@ def evaluate_all_models(user_input, expected_sql, chat_history):
|
|
43 |
client = model_config["client"]
|
44 |
model_id = model_config["model_id"]
|
45 |
|
46 |
-
|
|
|
|
|
47 |
try:
|
48 |
start_time = time.time()
|
49 |
-
|
50 |
result = client.chat.completions.create(
|
51 |
model=model_id,
|
52 |
messages=messages
|
53 |
)
|
54 |
-
model_sql = result.choices[0].message.content
|
55 |
latency = int((time.time() - start_time) * 1000)
|
56 |
|
57 |
except Exception as e:
|
58 |
model_sql = f"β οΈ Error: {str(e)}"
|
59 |
latency = -1
|
60 |
|
61 |
-
# Evaluation criteria
|
62 |
sql_gen_accuracy = "β
" if expected_sql.strip().lower() in model_sql.strip().lower() else "β"
|
63 |
exec_response_accuracy = "β
" if sql_gen_accuracy == "β
" else "β"
|
64 |
intent_clarity = "β
" if len(user_input.strip().split()) < 5 and "SELECT" in model_sql.upper() else "β"
|
@@ -84,16 +135,17 @@ def evaluate_all_models(user_input, expected_sql, chat_history):
|
|
84 |
# ------------------------
|
85 |
def get_random_spider_prompt():
|
86 |
sample = random.choice(spider_dataset)
|
87 |
-
return sample["question"], sample["query"], sample["query"]
|
88 |
|
89 |
# ------------------------
|
90 |
# Gradio UI
|
91 |
# ------------------------
|
92 |
with gr.Blocks() as demo:
|
93 |
-
gr.Markdown("## π§ Spider Dataset
|
94 |
|
95 |
prompt_input = gr.Textbox(label="Your Prompt", lines=3, placeholder="Ask your BI question...")
|
96 |
expected_sql_display = gr.Textbox(label="Expected SQL", lines=2, interactive=False)
|
|
|
97 |
|
98 |
load_spider_btn = gr.Button("π Load Random Spider Prompt")
|
99 |
run_button = gr.Button("Send & Evaluate All Models")
|
@@ -103,16 +155,17 @@ with gr.Blocks() as demo:
|
|
103 |
|
104 |
chat_memory = gr.State([])
|
105 |
expected_sql = gr.State("")
|
|
|
106 |
|
107 |
load_spider_btn.click(
|
108 |
fn=get_random_spider_prompt,
|
109 |
inputs=[],
|
110 |
-
outputs=[prompt_input, expected_sql, expected_sql_display]
|
111 |
)
|
112 |
|
113 |
run_button.click(
|
114 |
fn=evaluate_all_models,
|
115 |
-
inputs=[prompt_input, expected_sql, chat_memory],
|
116 |
outputs=[chat_display, chat_memory, evaluation_display]
|
117 |
)
|
118 |
|
|
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import InferenceClient
|
6 |
from datasets import load_dataset
|
7 |
+
import json
|
8 |
|
9 |
# ------------------------
|
10 |
# Auth
|
|
|
16 |
# ------------------------
|
17 |
spider_dataset = load_dataset("spider", split="train")
|
18 |
|
19 |
+
# Load table schemas from Spider
|
20 |
+
with open("spider/tables.json", "r") as f:
|
21 |
+
tables_json = json.load(f)
|
22 |
+
|
23 |
+
# Build db_id β schema_string mapping
|
24 |
+
def extract_schema(db_id):
|
25 |
+
for db in tables_json:
|
26 |
+
if db["db_id"] == db_id:
|
27 |
+
tables = []
|
28 |
+
for table_name, columns in zip(db["table_names_original"], db["column_names_original"]):
|
29 |
+
col_list = [col[1] for col in db["column_names_original"] if col[0] == db["table_names_original"].index(table_name)]
|
30 |
+
table_def = f"{table_name}({', '.join(col for col in col_list if col != '*')})"
|
31 |
+
tables.append(table_def)
|
32 |
+
return "\n".join(tables)
|
33 |
+
return "Schema not found."
|
34 |
+
|
35 |
# ------------------------
|
36 |
# Inference Clients
|
37 |
# ------------------------
|
|
|
50 |
}
|
51 |
|
52 |
# ------------------------
|
53 |
+
# Few-shot examples
|
54 |
+
# ------------------------
|
55 |
+
few_shot_examples = """Q: Show all department names.
|
56 |
+
A: SELECT name FROM department;
|
57 |
+
|
58 |
+
Q: Count number of students.
|
59 |
+
A: SELECT COUNT(*) FROM student;"""
|
60 |
+
|
61 |
+
# ------------------------
|
62 |
+
# Prompt Constructor
|
63 |
+
# ------------------------
|
64 |
+
def build_sql_prompt(user_question, db_id):
|
65 |
+
schema = extract_schema(db_id)
|
66 |
+
prompt = f"""You are an expert SQL assistant. Convert the given question into a valid SQL query using the database schema provided below.
|
67 |
+
|
68 |
+
Instructions:
|
69 |
+
- Respond with only the SQL query.
|
70 |
+
- Do not include markdown, explanations, or additional formatting.
|
71 |
+
- Use correct table and column names from the schema.
|
72 |
+
- Follow SQL best practices and Spider dataset formatting.
|
73 |
+
|
74 |
+
Schema (db_id: {db_id}):
|
75 |
+
{schema}
|
76 |
+
|
77 |
+
Examples:
|
78 |
+
{few_shot_examples}
|
79 |
+
|
80 |
+
Now answer this:
|
81 |
+
Q: {user_question}
|
82 |
+
A:"""
|
83 |
+
return prompt
|
84 |
+
|
85 |
+
# ------------------------
|
86 |
+
# Evaluate Models with Engineered Prompt
|
87 |
# ------------------------
|
88 |
+
def evaluate_all_models(user_input, expected_sql, db_id, chat_history):
|
89 |
evaluations = []
|
90 |
full_chat_transcript = ""
|
91 |
|
|
|
93 |
client = model_config["client"]
|
94 |
model_id = model_config["model_id"]
|
95 |
|
96 |
+
prompt = build_sql_prompt(user_input, db_id)
|
97 |
+
messages = [{"role": "user", "content": prompt}]
|
98 |
+
|
99 |
try:
|
100 |
start_time = time.time()
|
|
|
101 |
result = client.chat.completions.create(
|
102 |
model=model_id,
|
103 |
messages=messages
|
104 |
)
|
105 |
+
model_sql = result.choices[0].message.content.strip()
|
106 |
latency = int((time.time() - start_time) * 1000)
|
107 |
|
108 |
except Exception as e:
|
109 |
model_sql = f"β οΈ Error: {str(e)}"
|
110 |
latency = -1
|
111 |
|
112 |
+
# Evaluation criteria
|
113 |
sql_gen_accuracy = "β
" if expected_sql.strip().lower() in model_sql.strip().lower() else "β"
|
114 |
exec_response_accuracy = "β
" if sql_gen_accuracy == "β
" else "β"
|
115 |
intent_clarity = "β
" if len(user_input.strip().split()) < 5 and "SELECT" in model_sql.upper() else "β"
|
|
|
135 |
# ------------------------
|
136 |
def get_random_spider_prompt():
|
137 |
sample = random.choice(spider_dataset)
|
138 |
+
return sample["question"], sample["query"], sample["query"], sample["db_id"]
|
139 |
|
140 |
# ------------------------
|
141 |
# Gradio UI
|
142 |
# ------------------------
|
143 |
with gr.Blocks() as demo:
|
144 |
+
gr.Markdown("## π§ Advanced SQL Generation Evaluation (Spider Dataset + Prompt Engineering)")
|
145 |
|
146 |
prompt_input = gr.Textbox(label="Your Prompt", lines=3, placeholder="Ask your BI question...")
|
147 |
expected_sql_display = gr.Textbox(label="Expected SQL", lines=2, interactive=False)
|
148 |
+
dbid_display = gr.Textbox(label="DB ID", lines=1, interactive=False)
|
149 |
|
150 |
load_spider_btn = gr.Button("π Load Random Spider Prompt")
|
151 |
run_button = gr.Button("Send & Evaluate All Models")
|
|
|
155 |
|
156 |
chat_memory = gr.State([])
|
157 |
expected_sql = gr.State("")
|
158 |
+
db_id = gr.State("")
|
159 |
|
160 |
load_spider_btn.click(
|
161 |
fn=get_random_spider_prompt,
|
162 |
inputs=[],
|
163 |
+
outputs=[prompt_input, expected_sql, expected_sql_display, db_id, dbid_display]
|
164 |
)
|
165 |
|
166 |
run_button.click(
|
167 |
fn=evaluate_all_models,
|
168 |
+
inputs=[prompt_input, expected_sql, db_id, chat_memory],
|
169 |
outputs=[chat_display, chat_memory, evaluation_display]
|
170 |
)
|
171 |
|