Mubbashir Ahmed commited on
Commit
de5f14a
·
1 Parent(s): 612686d

reverting back

Browse files
Files changed (1) hide show
  1. app.py +4 -31
app.py CHANGED
@@ -32,31 +32,6 @@ model_list = {
32
  }
33
  }
34
 
35
- # ------------------------
36
- # Prompt Construction
37
- # ------------------------
38
- FEW_SHOT = """Q: Show all department names.
39
- A: SELECT name FROM department;
40
-
41
- Q: Count number of students.
42
- A: SELECT COUNT(*) FROM student;
43
- """
44
-
45
- def build_prompt(user_question):
46
- return f"""You are an expert SQL assistant. Convert the given question into a valid SQL query.
47
-
48
- Instructions:
49
- - Return only the SQL query.
50
- - Do not include markdown, explanations, or formatting.
51
- - Follow Spider dataset SQL syntax.
52
-
53
- Examples:
54
- {FEW_SHOT}
55
-
56
- Now answer this:
57
- Q: {user_question}
58
- A:"""
59
-
60
  # ------------------------
61
  # Inference + Evaluation Logic
62
  # ------------------------
@@ -68,16 +43,15 @@ def evaluate_all_models(user_input, expected_sql, chat_history):
68
  client = model_config["client"]
69
  model_id = model_config["model_id"]
70
 
71
- prompt = build_prompt(user_input)
72
- messages = [{"role": "user", "content": prompt}]
73
-
74
  try:
75
  start_time = time.time()
 
76
  result = client.chat.completions.create(
77
  model=model_id,
78
  messages=messages
79
  )
80
- model_sql = result.choices[0].message.content.strip()
81
  latency = int((time.time() - start_time) * 1000)
82
 
83
  except Exception as e:
@@ -116,7 +90,7 @@ def get_random_spider_prompt():
116
  # Gradio UI
117
  # ------------------------
118
  with gr.Blocks() as demo:
119
- gr.Markdown("## 🧠 Spider Dataset Model Evaluation with Prompt Engineering")
120
 
121
  prompt_input = gr.Textbox(label="Your Prompt", lines=3, placeholder="Ask your BI question...")
122
  expected_sql_display = gr.Textbox(label="Expected SQL", lines=2, interactive=False)
@@ -142,6 +116,5 @@ with gr.Blocks() as demo:
142
  outputs=[chat_display, chat_memory, evaluation_display]
143
  )
144
 
145
-
146
  # Launch
147
  demo.launch()
 
32
  }
33
  }
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  # ------------------------
36
  # Inference + Evaluation Logic
37
  # ------------------------
 
43
  client = model_config["client"]
44
  model_id = model_config["model_id"]
45
 
46
+ messages = chat_history + [{"role": "user", "content": user_input}]
 
 
47
  try:
48
  start_time = time.time()
49
+
50
  result = client.chat.completions.create(
51
  model=model_id,
52
  messages=messages
53
  )
54
+ model_sql = result.choices[0].message.content
55
  latency = int((time.time() - start_time) * 1000)
56
 
57
  except Exception as e:
 
90
  # Gradio UI
91
  # ------------------------
92
  with gr.Blocks() as demo:
93
+ gr.Markdown("## 🧠 Spider Dataset Model Evaluation")
94
 
95
  prompt_input = gr.Textbox(label="Your Prompt", lines=3, placeholder="Ask your BI question...")
96
  expected_sql_display = gr.Textbox(label="Expected SQL", lines=2, interactive=False)
 
116
  outputs=[chat_display, chat_memory, evaluation_display]
117
  )
118
 
 
119
  # Launch
120
  demo.launch()