import streamlit as st import itertools from typing import Dict, Union from nltk import sent_tokenize import nltk nltk.download('punkt') import torch from transformers import( AutoModelForSeq2SeqLM, AutoTokenizer ) class QGPipeline: def __init__( self ): self.model = AutoModelForSeq2SeqLM.from_pretrained("muchad/idt5-qa-qg") self.tokenizer = AutoTokenizer.from_pretrained("muchad/idt5-qa-qg") self.qg_format = "highlight" self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model.to(self.device) self.ans_model = self.model self.ans_tokenizer = self.tokenizer assert self.model.__class__.__name__ in ["T5ForConditionalGeneration"] self.model_type = "t5" def __call__(self, inputs: str): inputs = " ".join(inputs.split()) sents, answers = self._extract_answers(inputs) flat_answers = list(itertools.chain(*answers)) if len(flat_answers) == 0: return [] qg_examples = self._prepare_inputs_for_qg_from_answers_hl(sents, answers) qg_inputs = [example['source_text'] for example in qg_examples] questions = self._generate_questions(qg_inputs) output = [{'answer': example['answer'], 'question': que} for example, que in zip(qg_examples, questions)] return output def _generate_questions(self, inputs): inputs = self._tokenize(inputs, padding=True, truncation=True) outs = self.model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), max_length=80, num_beams=4, ) questions = [self.tokenizer.decode(ids, skip_special_tokens=True) for ids in outs] return questions def _extract_answers(self, context): sents, inputs = self._prepare_inputs_for_ans_extraction(context) inputs = self._tokenize(inputs, padding=True, truncation=True) outs = self.ans_model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), max_length=80, ) dec = [self.ans_tokenizer.decode(ids, skip_special_tokens=True) for ids in outs] answers = [item.split('') for item in dec] answers = [i[:-1] for i in answers] return sents, answers def _tokenize(self, inputs, padding=True, truncation=True, add_special_tokens=True, max_length=512 ): inputs = self.tokenizer.batch_encode_plus( inputs, max_length=max_length, add_special_tokens=add_special_tokens, truncation=truncation, padding="max_length" if padding else False, pad_to_max_length=padding, return_tensors="pt" ) return inputs def _prepare_inputs_for_ans_extraction(self, text): sents = sent_tokenize(text) inputs = [] for i in range(len(sents)): source_text = "extract answers:" for j, sent in enumerate(sents): if i == j: sent = " %s " % sent source_text = "%s %s" % (source_text, sent) source_text = source_text.strip() source_text = source_text + " " inputs.append(source_text) return sents, inputs def _prepare_inputs_for_qg_from_answers_hl(self, sents, answers): inputs = [] for i, answer in enumerate(answers): if len(answer) == 0: continue for answer_text in answer: sent = sents[i] sents_copy = sents[:] answer_text = answer_text.strip() try: ans_start_idx = sent.index(answer_text) sent = f"{sent[:ans_start_idx]} {answer_text} {sent[ans_start_idx + len(answer_text): ]}" sents_copy[i] = sent source_text = " ".join(sents_copy) source_text = f"generate question: {source_text}" if self.model_type == "t5": source_text = source_text + " " except: continue inputs.append({"answer": answer_text, "source_text": source_text}) return inputs class TaskPipeline(QGPipeline): def __init__(self, **kwargs): super().__init__(**kwargs) def __call__(self, inputs: Union[Dict, str]): return super().__call__(inputs) def pipeline(): task = TaskPipeline return task() @st.cache(ttl=24*3600,allow_output_mutation=True) def pipeline(): task = TaskPipeline return task() st.title("Indonesian Question Generation") st.write("Indonesian Question Generation System using [idT5](https://huggingface.co/muchad/idt5-base)") qg = pipeline() default_context = "Kapitan Pattimura adalah pahlawan dari Maluku. Beliau lahir pada tanggal 8 Juni 1783 dan meninggal pada tanggal 16 Desember 1817." context_in = st.text_area('Context:', default_context, height=200) if st.button('Generate Question'): if context_in: questions = qg(context_in) re = "" for i, q in enumerate(questions): re += (str(i+1) + "\tAnswer: %s".expandtabs(1) % q['answer'] + " \n" + "\tQuestion: %s".expandtabs(2) % q['question'] + " \n") st.write(re) else: st.write("Please check your context")