Spaces:
Sleeping
Sleeping
update code and requirements
Browse files- app.py +29 -0
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,7 +1,36 @@
|
|
|
|
1 |
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
@app.get("/")
|
6 |
def greet_json():
|
7 |
return {"Hello": "World!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
from fastapi import FastAPI
|
3 |
+
import pickle
|
4 |
+
import pandas as pd
|
5 |
+
from pydantic import BaseModel
|
6 |
+
|
7 |
+
corpus = pickle.load(open("./corpus/all_embeddings.pickle", "rb"))
|
8 |
+
label_encoder = pickle.load("./corpus/label_encoder.pickle")
|
9 |
+
model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
10 |
+
df = pd.DataFrame(data={"label": pickle.load(open("./corpus/y_all.pickle"))})
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
class Disease(BaseModel):
|
15 |
+
id: int
|
16 |
+
name: str
|
17 |
+
score: float
|
18 |
+
|
19 |
@app.get("/")
|
20 |
def greet_json():
|
21 |
return {"Hello": "World!"}
|
22 |
+
|
23 |
+
@app.post("/", response_model=list[Disease])
|
24 |
+
async def predict(query: str):
|
25 |
+
query_embedding = model.encode(query).astype('float')
|
26 |
+
similarity_vectors = model.similarity(q, all_embeddings)
|
27 |
+
scores, indicies = torch.topk(similarity_vectors, k=len(all_embeddings))
|
28 |
+
id = df.iloc[indicies]
|
29 |
+
id = df.drop_duplicates("label")
|
30 |
+
scores = scores[id.index]
|
31 |
+
diseases = label_encoder.inverse_transform(id.label.values)
|
32 |
+
id = id.label.values
|
33 |
+
diseases = [dict("id": value[0], "name": value[1], "score" : value[2]) for value in zip(id, diseases, scores)]
|
34 |
+
return diseases
|
35 |
+
|
36 |
+
|
requirements.txt
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
fastapi
|
2 |
uvicorn[standard]
|
|
|
|
|
|
|
|
1 |
fastapi
|
2 |
uvicorn[standard]
|
3 |
+
pandas
|
4 |
+
sentence-transformers
|
5 |
+
pydantic
|