from fastai.vision.all import * from fastai.learner import load_learner from huggingface_hub import from_pretrained_fastai, hf_hub_download import gradio as gr import skimage learn = load_learner('PetNet50.pkl') # learn = from_pretrained_fastai("kurianbenoy/course_v5_lesson2_pets_convnext_base_in22k") #learn = load_learner( # hf_hub_download("kurianbenoy/course_v5_lesson2_pets_convnext_base_in22k", "model.pkl") #) labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Pet Breed Classifier" description = """ πΆπ± π¬π§ = A pet breed classifier (Dogs and Cats) trained on the Oxford Pets dataset using fastai. Created as a demo from the course by Jeremy Howard. For best results use photos of your pets. πͺπΈ = Un clasificador de razas de mascotas (perros y gatos) entrenado en el dataset Oxford Pets. Usa fotos de tus mascotas para obtener la raza. π¨βπ¨βπ§βπ¦ CZDJ β€οΈ """ article="
" examples = ['siamese.jpg','pug.jpg'] gr.Interface(fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=3), title=title, description=description, article=article, examples=examples).launch()