Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,33 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
|
3 |
+
import torch
|
4 |
|
5 |
+
def recognize_captcha(input, mdl):
|
6 |
+
input = transform(input.convert('RGB'))
|
7 |
|
8 |
+
# Load model and processor
|
9 |
+
processor = TrOCRProcessor.from_pretrained(mdl)
|
10 |
+
model = VisionEncoderDecoderModel.from_pretrained(mdl)
|
11 |
+
|
12 |
+
# Prepare image
|
13 |
+
pixel_values = processor(input, return_tensors="pt").pixel_values
|
14 |
+
|
15 |
+
# Generate text
|
16 |
+
generated_ids = model.generate(pixel_values)
|
17 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
18 |
+
return generated_text
|
19 |
+
|
20 |
+
iface = gr.Interface(
|
21 |
+
recognize_captcha[
|
22 |
+
gr.Image,
|
23 |
+
gr.Dropdown(
|
24 |
+
['anuashok/ocr-captcha-v3','anuashok/ocr-captcha-v2','anuashok/ocr-captcha-v1'], label='Model to use'
|
25 |
+
)
|
26 |
+
],
|
27 |
+
'text',
|
28 |
+
title = "character sequence recognition from scene-image (captcha)",
|
29 |
+
description = "Using some TrOCR models found on the HF Hub. Will you have to train your own?",
|
30 |
+
examples = ['','']
|
31 |
+
)
|
32 |
+
|
33 |
+
iface.launch()
|