Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""Untitled14.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1qm9JqCY6CGVTqzvw3GEAI8BsI_-w1rwP | |
""" | |
# !pip install -q -U gradio | |
# !pip install -q -U torch transformers accelerate einops | |
# !pip install -q peft | |
examples = [["Which organelle carries out the synthesis and packaging of digestive enzymes?"], | |
["What is the change in speed of a moving object per unit time?"] , | |
["What is the formula of carbon tetrafluoride?"]] | |
import gradio as gr | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
TextIteratorStreamer, | |
pipeline, | |
) | |
from peft import PeftModel, PeftConfig | |
# Load the tokenizer and models | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) | |
config = PeftConfig.from_pretrained("mudogruer/phi-2-SciQ") | |
base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2") | |
model = PeftModel.from_pretrained(base_model, "mudogruer/phi-2-SciQ") | |
# Text generation pipeline | |
phi2 = pipeline( | |
"text-generation", | |
tokenizer=tokenizer, | |
model=model, | |
pad_token_id=tokenizer.eos_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
device_map="cpu", | |
) | |
def generate(message, max_new_tokens): | |
# Provide a default value if max_new_tokens is None | |
if max_new_tokens is None: | |
max_new_tokens = 50 # Default value; adjust as needed based on your typical use case | |
instruction = "You are a helpful assistant to 'User'. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'." | |
final_prompt = f"Instruction: {instruction}\nUser: {message}\nOutput:" | |
# Calculate the total length allowed for the model and adjust max_new_tokens | |
input_length = len(tokenizer.encode(final_prompt)) | |
total_max_length = 512 # Adjust based on your model's max length capability | |
if input_length + max_new_tokens > total_max_length: | |
max_new_tokens = total_max_length - input_length # Adjust to not exceed total max length | |
# Generate text synchronously | |
response = phi2(final_prompt, max_new_tokens=max_new_tokens) | |
generated_text = response[0]['generated_text'] | |
# Extract the response | |
last_response = generated_text.split('Output:')[-1].strip() | |
return last_response | |
# Gradio interface setup | |
with gr.Blocks() as demo: | |
gr.Markdown("""### Phi-2 Scientific Question Chatbot (Fine-tuned from SciQ dataset)""") | |
tokens_slider = gr.Slider(8, 128, value=21, label="Maximum new tokens") | |
chatbot = gr.Interface(fn=generate, inputs=["text", tokens_slider], outputs="text", examples=examples) | |
demo.launch(share=True) | |