File size: 33,331 Bytes
f85e212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857


from typing import Optional, Tuple, Union
from pathlib import Path 

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from itertools import chain

from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block
from .taming_discriminator import NLayerDiscriminator
from medical_diffusion.models import BasicModel
from torchvision.utils import save_image

from torch.distributions.normal import Normal
from torch.distributions import kl_divergence

class Encoder(nn.Module):
    def __init__(
        self,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownEncoderBlock2D",),
        block_out_channels=(64),
        layers_per_block=2,
        norm_num_groups=32,
        act_fn="silu",
        double_z=True,
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)

        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i+1]
            is_final_block = False #i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
                downsample_padding=0,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attn_num_head_channels=None,
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attn_num_head_channels=None,
            resnet_groups=norm_num_groups,
            temb_channels=None,
        )

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)

    def forward(self, x):
        sample = x
        sample = self.conv_in(sample)

        # down
        for down_block in self.down_blocks:
            sample = down_block(sample)

        # middle
        sample = self.mid_block(sample)

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


class Decoder(nn.Module):
    def __init__(
        self,
        in_channels=3,
        out_channels=3,
        up_block_types=("UpDecoderBlock2D",),
        block_out_channels=(64,),
        layers_per_block=2,
        norm_num_groups=32,
        act_fn="silu",
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attn_num_head_channels=None,
            resnet_groups=norm_num_groups,
            temb_channels=None,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i+1]

            is_final_block = False # i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attn_num_head_channels=None,
                temb_channels=None,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

    def forward(self, z):
        sample = z
        sample = self.conv_in(sample)

        # middle
        sample = self.mid_block(sample)

        # up
        for up_block in self.up_blocks:
            sample = up_block(sample)

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


class VectorQuantizer(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
    multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
    def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=False):
        super().__init__()
        self.n_e = n_e
        self.e_dim = e_dim
        self.beta = beta
        self.legacy = legacy

        self.embedding = nn.Embedding(self.n_e, self.e_dim)
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(
                f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                f"Using {self.unknown_index} for unknown indices."
            )
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

    def remap_to_used(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

    def unmap_to_all(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

    def forward(self, z):
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
        z_flattened = z.view(-1, self.e_dim)
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z

        d = (
            torch.sum(z_flattened**2, dim=1, keepdim=True)
            + torch.sum(self.embedding.weight**2, dim=1)
            - 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t())
        )

        min_encoding_indices = torch.argmin(d, dim=1)
        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
        z_q = z + (z_q - z).detach()

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

    def get_codebook_entry(self, indices, shape):
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
        z_q = self.embedding(indices)

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class DiagonalGaussianDistribution(object):
    def __init__(self, parameters, deterministic=False):
        self.batch_size = parameters.shape[0]
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        # self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)

    def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
        device = self.parameters.device
        sample_device = "cpu" if device.type == "mps" else device
        sample = torch.randn(self.mean.shape, generator=generator, device=sample_device).to(device)
        x = self.mean + self.std * sample
        return x

    def kl(self, other=None):
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
                return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar)/self.batch_size
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                )/self.batch_size

        # q_z_x = Normal(self.mean, self.logvar.mul(.5).exp())
        # p_z = Normal(torch.zeros_like(self.mean), torch.ones_like(self.logvar))
        # kl_div = kl_divergence(q_z_x, p_z).sum(1).mean()
        # return kl_div

    def nll(self, sample, dims=[1, 2, 3]):
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims)

    def mode(self):
        return self.mean


class VQModel(nn.Module):
    r"""VQ-VAE model from the paper Neural Discrete Representation Learning by Aaron van den Oord, Oriol Vinyals and Koray
    Kavukcuoglu.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the model (such as downloading or saving, etc.)

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
        down_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to :
            obj:`(64,)`): Tuple of block output channels.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
        sample_size (`int`, *optional*, defaults to `32`): TODO
        num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
    """


    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"),
        block_out_channels: Tuple[int] = (32, 64, 128, 256),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 3,
        sample_size: int = 32,
        num_vq_embeddings: int = 256,
        norm_num_groups: int = 32,
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=False,
        )

        self.quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
        self.quantize = VectorQuantizer(
            num_vq_embeddings, latent_channels, beta=0.25, remap=None, sane_index_shape=False
        )
        self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)

        # pass init params to Decoder
        self.decoder = Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
        )

    # def encode(self, x: torch.FloatTensor):
    #     z = self.encoder(x)
    #     z = self.quant_conv(z)
    #     return z
    
    def encode(self, x, return_loss=True, force_quantize= True):
        z = self.encoder(x)
        z = self.quant_conv(z)

        if force_quantize:
            z_q, emb_loss, _ = self.quantize(z)
        else:
            z_q, emb_loss = z, None 

        if return_loss:
            return z_q, emb_loss
        else:
            return z_q
        
    def decode(self, z_q)  -> torch.FloatTensor:
        z_q = self.post_quant_conv(z_q)
        x = self.decoder(z_q)
        return x 

    # def decode(self, z: torch.FloatTensor, return_loss=True, force_quantize: bool = True)  -> torch.FloatTensor:
    #     if force_quantize:
    #         z_q, emb_loss, _ = self.quantize(z)
    #     else:
    #         z_q, emb_loss = z, None 

    #     z_q = self.post_quant_conv(z_q)
    #     x = self.decoder(z_q)

    #     if return_loss:
    #         return x, emb_loss
    #     else:
    #         return x

    def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
        r"""
        Args:
            sample (`torch.FloatTensor`): Input sample.
        """
        # h = self.encode(sample)
        h, emb_loss = self.encode(sample)
        dec = self.decode(h)
        # dec, emb_loss = self.decode(h)

        return dec, emb_loss


class AutoencoderKL(nn.Module):
    r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma
    and Max Welling.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the model (such as downloading or saving, etc.)

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
        down_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to :
            obj:`(64,)`): Tuple of block output channels.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
        sample_size (`int`, *optional*, defaults to `32`): TODO
    """


    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D","DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (32, 64, 128, 128),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 3,
        norm_num_groups: int = 32,
        sample_size: int = 32,
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
        )

        # pass init params to Decoder
        self.decoder = Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
        )

        self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
        self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)

    def encode(self, x: torch.FloatTensor):
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z: torch.FloatTensor) -> torch.FloatTensor:
        z = self.post_quant_conv(z)
        dec = self.decoder(z)
        return dec

    def forward(
        self,
        sample: torch.FloatTensor,
        sample_posterior: bool = True,
        generator: Optional[torch.Generator] = None,
    ) -> torch.FloatTensor:
        r"""
        Args:
            sample (`torch.FloatTensor`): Input sample.
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
        """
        x = sample
        posterior = self.encode(x)
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        kl_loss = posterior.kl()
        dec = self.decode(z)
        return dec, kl_loss



class VQVAEWrapper(BasicModel):
    def __init__(
        self, 
        in_ch: int = 3,
        out_ch: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (32, 64, 128, 256, ),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 3,
        sample_size: int = 32,
        num_vq_embeddings: int = 64,
        norm_num_groups: int = 32, 

        optimizer=torch.optim.AdamW, 
        optimizer_kwargs={}, 
        lr_scheduler=None, 
        lr_scheduler_kwargs={}, 
        loss=torch.nn.MSELoss, 
        loss_kwargs={}
        ):
        super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs, loss, loss_kwargs)
        self.model = VQModel(in_ch, out_ch, down_block_types, up_block_types, block_out_channels,
                            layers_per_block, act_fn, latent_channels, sample_size, num_vq_embeddings, norm_num_groups) 
    
    def forward(self, sample):
        return self.model(sample) 

    def encode(self, x):
        z = self.model.encode(x, return_loss=False)  
        return z
    
    def decode(self, z):
        x = self.model.decode(z)
        return x

    def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int):
        # ------------------------- Get Source/Target ---------------------------
        x = batch['source']
        target = x

        # ------------------------- Run Model ---------------------------
        pred, vq_loss = self(x)

        # ------------------------- Compute Loss ---------------------------
        loss = self.loss_fct(pred, target)
        loss += vq_loss
         
        # --------------------- Compute Metrics  -------------------------------
        results = {'loss':loss}
        with torch.no_grad():
            results['L2'] = torch.nn.functional.mse_loss(pred, target)
            results['L1'] = torch.nn.functional.l1_loss(pred, target)

        # ----------------- Log Scalars ----------------------
        for metric_name, metric_val in results.items():
            self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True)     

        # ----------------- Save Image ------------------------------
        if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0:
            def norm(x):
                return (x-x.min())/(x.max()-x.min())

            images = [x, pred]
            log_step = self.global_step // self.trainer.log_every_n_steps
            path_out = Path(self.logger.log_dir)/'images'
            path_out.mkdir(parents=True, exist_ok=True)
            images = torch.cat([norm(img) for img in images])
            save_image(images, path_out/f'sample_{log_step}.png')
    
        return loss

def hinge_d_loss(logits_real, logits_fake):
    loss_real = torch.mean(F.relu(1. - logits_real))
    loss_fake = torch.mean(F.relu(1. + logits_fake))
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss

def vanilla_d_loss(logits_real, logits_fake):
    d_loss = 0.5 * (
        torch.mean(F.softplus(-logits_real)) +
        torch.mean(F.softplus(logits_fake)))
    return d_loss

class VQGAN(BasicModel):
    def __init__(
        self, 
        in_ch: int = 3,
        out_ch: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (32, 64, 128, 256, ),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 3,
        sample_size: int = 32,
        num_vq_embeddings: int = 64,
        norm_num_groups: int = 32, 

        start_gan_train_step = 50000, # NOTE step increase with each optimizer 
        gan_loss_weight: float = 1.0, # alias discriminator  
        perceptual_loss_weight: float = 1.0,
        embedding_loss_weight: float = 1.0,
                
        optimizer=torch.optim.AdamW, 
        optimizer_kwargs={}, 
        lr_scheduler=None, 
        lr_scheduler_kwargs={}, 
        loss=torch.nn.MSELoss, 
        loss_kwargs={}
    ):
        super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs, loss, loss_kwargs)
        self.vqvae = VQModel(in_ch, out_ch, down_block_types, up_block_types, block_out_channels, layers_per_block, act_fn, 
                                  latent_channels, sample_size, num_vq_embeddings, norm_num_groups)
        self.discriminator = NLayerDiscriminator(in_ch) 
        # self.perceiver = ... # Currently not supported, would require another trained NN 

        self.start_gan_train_step = start_gan_train_step
        self.perceptual_loss_weight = perceptual_loss_weight
        self.gan_loss_weight = gan_loss_weight
        self.embedding_loss_weight = embedding_loss_weight
    
    def forward(self, x, condition=None):
        return self.vqvae(x)

    def encode(self, x):
        z = self.vqvae.encode(x, return_loss=False)  
        return z
    
    def decode(self, z):
        x = self.vqvae.decode(z)
        return x


    def compute_lambda(self, rec_loss, gan_loss, eps=1e-4):
        """Computes adaptive weight as proposed in eq. 7 of https://arxiv.org/abs/2012.09841"""
        last_layer = self.vqvae.decoder.conv_out.weight
        rec_grads = torch.autograd.grad(rec_loss, last_layer, retain_graph=True)[0]
        gan_grads = torch.autograd.grad(gan_loss, last_layer, retain_graph=True)[0]
        d_weight = torch.norm(rec_grads) / (torch.norm(gan_grads) + eps) 
        d_weight = torch.clamp(d_weight, 0.0, 1e4)
        return d_weight.detach()



    def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int):
        x = batch['source']
        # condition = batch.get('target', None)

        pred, vq_emb_loss = self.vqvae(x)

        if optimizer_idx == 0:
            # ------ VAE -------
            vq_img_loss = F.mse_loss(pred, x)
            vq_per_loss = 0.0 #self.perceiver(pred, x) 
            rec_loss = vq_img_loss+self.perceptual_loss_weight*vq_per_loss

            # ------- GAN ----- 
            if step > self.start_gan_train_step:
                gan_loss = -torch.mean(self.discriminator(pred))
                lambda_weight = self.compute_lambda(rec_loss, gan_loss)
                gan_loss = gan_loss*lambda_weight
            else:
                gan_loss = torch.tensor([0.0], requires_grad=True, device=x.device)

            loss =  self.gan_loss_weight*gan_loss+rec_loss+self.embedding_loss_weight*vq_emb_loss

        elif optimizer_idx == 1:
            if step > self.start_gan_train_step//2:
                logits_real = self.discriminator(x.detach())
                logits_fake = self.discriminator(pred.detach())
                loss = hinge_d_loss(logits_real, logits_fake)
            else:
                loss = torch.tensor([0.0], requires_grad=True, device=x.device)

        # --------------------- Compute Metrics  -------------------------------
        results = {'loss':loss.detach(), f'loss_{optimizer_idx}':loss.detach()}
        with torch.no_grad():
            results[f'L2'] = torch.nn.functional.mse_loss(pred, x)
            results[f'L1'] = torch.nn.functional.l1_loss(pred, x)

        # ----------------- Log Scalars ----------------------
        for metric_name, metric_val in results.items():
            self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True)     

        # ----------------- Save Image ------------------------------
        if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0: # NOTE: step 1 (opt1) , step=2 (opt2), step=3 (opt1), ...
            def norm(x):
                return (x-x.min())/(x.max()-x.min())

            images = torch.cat([x, pred])
            log_step = self.global_step // self.trainer.log_every_n_steps
            path_out = Path(self.logger.log_dir)/'images'
            path_out.mkdir(parents=True, exist_ok=True)
            images = torch.stack([norm(img) for img in images])
            save_image(images, path_out/f'sample_{log_step}.png')
        
        return loss 
    
    def configure_optimizers(self):
        opt_vae = self.optimizer(self.vqvae.parameters(), **self.optimizer_kwargs)
        opt_disc = self.optimizer(self.discriminator.parameters(), **self.optimizer_kwargs)
        if self.lr_scheduler is not None:
            scheduler = [
                {
                    'scheduler': self.lr_scheduler(opt_vae, **self.lr_scheduler_kwargs), 
                    'interval': 'step',
                    'frequency': 1
                },
                {
                    'scheduler': self.lr_scheduler(opt_disc, **self.lr_scheduler_kwargs),
                    'interval': 'step',
                    'frequency': 1
                },
            ]
        else:
            scheduler = []

        return [opt_vae, opt_disc], scheduler
    
class VAEWrapper(BasicModel):
    def __init__(
        self, 
        in_ch: int = 3,
        out_ch: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"), # "DownEncoderBlock2D", "DownEncoderBlock2D",
        up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D","UpDecoderBlock2D" ), # "UpDecoderBlock2D", "UpDecoderBlock2D",
        block_out_channels: Tuple[int] = (32, 64, 128, 256), #  128, 256
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 3,
        norm_num_groups: int = 32,
        sample_size: int = 32,

        optimizer=torch.optim.AdamW, 
        optimizer_kwargs={'lr':1e-4, 'weight_decay':1e-3, 'amsgrad':True}, 
        lr_scheduler=None, 
        lr_scheduler_kwargs={}, 
        # loss=torch.nn.MSELoss, # WARNING: No Effect 
        # loss_kwargs={'reduction': 'mean'}
        ):
        super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs ) # loss, loss_kwargs
        self.model = AutoencoderKL(in_ch, out_ch, down_block_types, up_block_types, block_out_channels,
                            layers_per_block, act_fn, latent_channels, norm_num_groups, sample_size) 
    
        self.logvar = nn.Parameter(torch.zeros(size=())) # Better weighting between KL and MSE, see (https://arxiv.org/abs/1903.05789), also used by Taming-Transfomer/Stable Diffusion 

    def forward(self, sample):
        return self.model(sample) 

    def encode(self, x):
        z = self.model.encode(x) # Latent space but not yet mapped to discrete embedding vectors  
        return z.sample(generator=None)
    
    def decode(self, z):
        x = self.model.decode(z)
        return x

    def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int):
        # ------------------------- Get Source/Target ---------------------------
        x = batch['source']
        target = x
        HALF_LOG_TWO_PI = 0.91893 # log(2pi)/2

        # ------------------------- Run Model ---------------------------
        pred, kl_loss = self(x)

        # ------------------------- Compute Loss ---------------------------
        loss = torch.sum( torch.square(pred-target))/x.shape[0]  #torch.sum( torch.square((pred-target)/torch.exp(self.logvar))/2 + self.logvar + HALF_LOG_TWO_PI )/x.shape[0] 
        loss += kl_loss
         
        # --------------------- Compute Metrics  -------------------------------
        results = {'loss':loss.detach()}
        with torch.no_grad():
            results['L2'] = torch.nn.functional.mse_loss(pred, target)
            results['L1'] = torch.nn.functional.l1_loss(pred, target)

        # ----------------- Log Scalars ----------------------
        for metric_name, metric_val in results.items():
            self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True)     

        # ----------------- Save Image ------------------------------
        if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0:
            def norm(x):
                return (x-x.min())/(x.max()-x.min())

            images = torch.cat([x, pred])
            log_step = self.global_step // self.trainer.log_every_n_steps
            path_out = Path(self.logger.log_dir)/'images'
            path_out.mkdir(parents=True, exist_ok=True)
            images = torch.stack([norm(img) for img in images])
            save_image(images, path_out/f'sample_{log_step}.png')
    
        return loss