Spaces:
Runtime error
Runtime error
File size: 16,046 Bytes
f85e212 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
from pathlib import Path
from tqdm import tqdm
import torch
import torch.nn.functional as F
from torchvision.utils import save_image
import streamlit as st
from medical_diffusion.models import BasicModel
from medical_diffusion.utils.train_utils import EMAModel
from medical_diffusion.utils.math_utils import kl_gaussians
class DiffusionPipeline(BasicModel):
def __init__(self,
noise_scheduler,
noise_estimator,
latent_embedder=None,
noise_scheduler_kwargs={},
noise_estimator_kwargs={},
latent_embedder_checkpoint='',
estimator_objective = 'x_T', # 'x_T' or 'x_0'
estimate_variance=False,
use_self_conditioning=False,
classifier_free_guidance_dropout=0.5, # Probability to drop condition during training, has only an effect for label-conditioned training
num_samples = 4,
do_input_centering = True, # Only for training
clip_x0=True, # Has only an effect during traing if use_self_conditioning=True, import for inference/sampling
use_ema = False,
ema_kwargs = {},
optimizer=torch.optim.AdamW,
optimizer_kwargs={'lr':1e-4}, # stable-diffusion ~ 1e-4
lr_scheduler= None, # stable-diffusion - LambdaLR
lr_scheduler_kwargs={},
loss=torch.nn.L1Loss,
loss_kwargs={},
sample_every_n_steps = 1000
):
# self.save_hyperparameters(ignore=['noise_estimator', 'noise_scheduler'])
super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs)
self.loss_fct = loss(**loss_kwargs)
self.sample_every_n_steps=sample_every_n_steps
noise_estimator_kwargs['estimate_variance'] = estimate_variance
noise_estimator_kwargs['use_self_conditioning'] = use_self_conditioning
self.noise_scheduler = noise_scheduler(**noise_scheduler_kwargs)
self.noise_estimator = noise_estimator(**noise_estimator_kwargs)
with torch.no_grad():
if latent_embedder is not None:
self.latent_embedder = latent_embedder.load_from_checkpoint(latent_embedder_checkpoint)
for param in self.latent_embedder.parameters():
param.requires_grad = False
else:
self.latent_embedder = None
self.estimator_objective = estimator_objective
self.use_self_conditioning = use_self_conditioning
self.num_samples = num_samples
self.classifier_free_guidance_dropout = classifier_free_guidance_dropout
self.do_input_centering = do_input_centering
self.estimate_variance = estimate_variance
self.clip_x0 = clip_x0
self.use_ema = use_ema
if use_ema:
self.ema_model = EMAModel(self.noise_estimator, **ema_kwargs)
def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int):
results = {}
x_0 = batch['source']
condition = batch.get('target', None)
# Embed into latent space or normalize
if self.latent_embedder is not None:
self.latent_embedder.eval()
with torch.no_grad():
x_0 = self.latent_embedder.encode(x_0)
if self.do_input_centering:
x_0 = 2*x_0-1 # [0, 1] -> [-1, 1]
# if self.clip_x0:
# x_0 = torch.clamp(x_0, -1, 1)
# Sample Noise
with torch.no_grad():
# Randomly selecting t [0,T-1] and compute x_t (noisy version of x_0 at t)
x_t, x_T, t = self.noise_scheduler.sample(x_0)
# Use EMA Model
if self.use_ema and (state != 'train'):
noise_estimator = self.ema_model.averaged_model
else:
noise_estimator = self.noise_estimator
# Re-estimate x_T or x_0, self-conditioned on previous estimate
self_cond = None
if self.use_self_conditioning:
with torch.no_grad():
pred, pred_vertical = noise_estimator(x_t, t, condition, None)
if self.estimate_variance:
pred, _ = pred.chunk(2, dim = 1) # Seperate actual prediction and variance estimation
if self.estimator_objective == "x_T": # self condition on x_0
self_cond = self.noise_scheduler.estimate_x_0(x_t, pred, t=t, clip_x0=self.clip_x0)
elif self.estimator_objective == "x_0": # self condition on x_T
self_cond = self.noise_scheduler.estimate_x_T(x_t, pred, t=t, clip_x0=self.clip_x0)
else:
raise NotImplementedError(f"Option estimator_target={self.estimator_objective} not supported.")
# Classifier free guidance
if torch.rand(1)<self.classifier_free_guidance_dropout:
condition = None
# Run Denoise
pred, pred_vertical = noise_estimator(x_t, t, condition, self_cond)
# Separate variance (scale) if it was learned
if self.estimate_variance:
pred, pred_var = pred.chunk(2, dim = 1) # Separate actual prediction and variance estimation
# Specify target
if self.estimator_objective == "x_T":
target = x_T
elif self.estimator_objective == "x_0":
target = x_0
else:
raise NotImplementedError(f"Option estimator_target={self.estimator_objective} not supported.")
# ------------------------- Compute Loss ---------------------------
interpolation_mode = 'area'
loss = 0
weights = [1/2**i for i in range(1+len(pred_vertical))] # horizontal (equal) + vertical (reducing with every step down)
tot_weight = sum(weights)
weights = [w/tot_weight for w in weights]
# ----------------- MSE/L1, ... ----------------------
loss += self.loss_fct(pred, target)*weights[0]
# ----------------- Variance Loss --------------
if self.estimate_variance:
# var_scale = var_scale.clamp(-1, 1) # Should not be necessary
var_scale = (pred_var+1)/2 # Assumed to be in [-1, 1] -> [0, 1]
pred_logvar = self.noise_scheduler.estimate_variance_t(t, x_t.ndim, log=True, var_scale=var_scale)
# pred_logvar = pred_var # If variance is estimated directly
if self.estimator_objective == 'x_T':
pred_x_0 = self.noise_scheduler.estimate_x_0(x_t, x_T, t, clip_x0=self.clip_x0)
elif self.estimator_objective == "x_0":
pred_x_0 = pred
else:
raise NotImplementedError()
with torch.no_grad():
pred_mean = self.noise_scheduler.estimate_mean_t(x_t, pred_x_0, t)
true_mean = self.noise_scheduler.estimate_mean_t(x_t, x_0, t)
true_logvar = self.noise_scheduler.estimate_variance_t(t, x_t.ndim, log=True, var_scale=0)
kl_loss = torch.mean(kl_gaussians(true_mean, true_logvar, pred_mean, pred_logvar), dim=list(range(1, x_0.ndim)))
nnl_loss = torch.mean(F.gaussian_nll_loss(pred_x_0, x_0, torch.exp(pred_logvar), reduction='none'), dim=list(range(1, x_0.ndim)))
var_loss = torch.mean(torch.where(t == 0, nnl_loss, kl_loss))
loss += var_loss
results['variance_scale'] = torch.mean(var_scale)
results['variance_loss'] = var_loss
# ----------------------------- Deep Supervision -------------------------
for i, pred_i in enumerate(pred_vertical):
target_i = F.interpolate(target, size=pred_i.shape[2:], mode=interpolation_mode, align_corners=None)
loss += self.loss_fct(pred_i, target_i)*weights[i+1]
results['loss'] = loss
# --------------------- Compute Metrics -------------------------------
with torch.no_grad():
results['L2'] = F.mse_loss(pred, target)
results['L1'] = F.l1_loss(pred, target)
# results['SSIM'] = SSIMMetric(data_range=pred.max()-pred.min(), spatial_dims=source.ndim-2)(pred, target)
# for i, pred_i in enumerate(pred_vertical):
# target_i = F.interpolate(target, size=pred_i.shape[2:], mode=interpolation_mode, align_corners=None)
# results[f'L1_{i}'] = F.l1_loss(pred_i, target_i).detach()
# ----------------- Log Scalars ----------------------
for metric_name, metric_val in results.items():
self.log(f"{state}/{metric_name}", metric_val, batch_size=x_0.shape[0], on_step=True, on_epoch=True)
#------------------ Log Image -----------------------
if self.global_step != 0 and self.global_step % self.sample_every_n_steps == 0:
dataformats = 'NHWC' if x_0.ndim == 5 else 'HWC'
def norm(x):
return (x-x.min())/(x.max()-x.min())
sample_cond = condition[0:self.num_samples] if condition is not None else None
sample_img = self.sample(num_samples=self.num_samples, img_size=x_0.shape[1:], condition=sample_cond).detach()
log_step = self.global_step // self.sample_every_n_steps
# self.logger.experiment.add_images("predict_img", norm(torch.moveaxis(pred[0,-1:], 0,-1)), global_step=self.current_epoch, dataformats=dataformats)
# self.logger.experiment.add_images("target_img", norm(torch.moveaxis(target[0,-1:], 0,-1)), global_step=self.current_epoch, dataformats=dataformats)
# self.logger.experiment.add_images("source_img", norm(torch.moveaxis(x_0[0,-1:], 0,-1)), global_step=log_step, dataformats=dataformats)
# self.logger.experiment.add_images("sample_img", norm(torch.moveaxis(sample_img[0,-1:], 0,-1)), global_step=log_step, dataformats=dataformats)
path_out = Path(self.logger.log_dir)/'images'
path_out.mkdir(parents=True, exist_ok=True)
# for 3D images use depth as batch :[D, C, H, W], never show more than 32 images
def depth2batch(image):
return (image if image.ndim<5 else torch.swapaxes(image[0], 0, 1))
images = depth2batch(sample_img)[:32]
save_image(images, path_out/f'sample_{log_step}.png', normalize=True)
return loss
def forward(self, x_t, t, condition=None, self_cond=None, guidance_scale=1.0, cold_diffusion=False, un_cond=None):
# Note: x_t expected to be in range ~ [-1, 1]
if self.use_ema:
noise_estimator = self.ema_model.averaged_model
else:
noise_estimator = self.noise_estimator
# Concatenate inputs for guided and unguided diffusion as proposed by classifier-free-guidance
if (condition is not None) and (guidance_scale != 1.0):
# Model prediction
pred_uncond, _ = noise_estimator(x_t, t, condition=un_cond, self_cond=self_cond)
pred_cond, _ = noise_estimator(x_t, t, condition=condition, self_cond=self_cond)
pred = pred_uncond + guidance_scale * (pred_cond - pred_uncond)
if self.estimate_variance:
pred_uncond, pred_var_uncond = pred_uncond.chunk(2, dim = 1)
pred_cond, pred_var_cond = pred_cond.chunk(2, dim = 1)
pred_var = pred_var_uncond + guidance_scale * (pred_var_cond - pred_var_uncond)
else:
pred, _ = noise_estimator(x_t, t, condition=condition, self_cond=self_cond)
if self.estimate_variance:
pred, pred_var = pred.chunk(2, dim = 1)
if self.estimate_variance:
pred_var_scale = pred_var/2+0.5 # [-1, 1] -> [0, 1]
pred_var_value = pred_var
else:
pred_var_scale = 0
pred_var_value = None
# pred_var_scale = pred_var_scale.clamp(0, 1)
if self.estimator_objective == 'x_0':
x_t_prior, x_0 = self.noise_scheduler.estimate_x_t_prior_from_x_0(x_t, t, pred, clip_x0=self.clip_x0, var_scale=pred_var_scale, cold_diffusion=cold_diffusion)
x_T = self.noise_scheduler.estimate_x_T(x_t, x_0=pred, t=t, clip_x0=self.clip_x0)
self_cond = x_T
elif self.estimator_objective == 'x_T':
x_t_prior, x_0 = self.noise_scheduler.estimate_x_t_prior_from_x_T(x_t, t, pred, clip_x0=self.clip_x0, var_scale=pred_var_scale, cold_diffusion=cold_diffusion)
x_T = pred
self_cond = x_0
else:
raise ValueError("Unknown Objective")
return x_t_prior, x_0, x_T, self_cond
@torch.no_grad()
def denoise(self, x_t, steps=None, condition=None, use_ddim=True, **kwargs):
self_cond = None
# ---------- run denoise loop ---------------
if use_ddim:
steps = self.noise_scheduler.timesteps if steps is None else steps
timesteps_array = torch.linspace(0, self.noise_scheduler.T-1, steps, dtype=torch.long, device=x_t.device) # [0, 1, 2, ..., T-1] if steps = T
else:
timesteps_array = self.noise_scheduler.timesteps_array[slice(0, steps)] # [0, ...,T-1] (target time not time of x_t)
st_prog_bar = st.progress(0)
for i, t in tqdm(enumerate(reversed(timesteps_array))):
st_prog_bar.progress((i+1)/len(timesteps_array))
# UNet prediction
x_t, x_0, x_T, self_cond = self(x_t, t.expand(x_t.shape[0]), condition, self_cond=self_cond, **kwargs)
self_cond = self_cond if self.use_self_conditioning else None
if use_ddim and (steps-i-1>0):
t_next = timesteps_array[steps-i-2]
alpha = self.noise_scheduler.alphas_cumprod[t]
alpha_next = self.noise_scheduler.alphas_cumprod[t_next]
sigma = kwargs.get('eta', 1) * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c = (1 - alpha_next - sigma ** 2).sqrt()
noise = torch.randn_like(x_t)
x_t = x_0 * alpha_next.sqrt() + c * x_T + sigma * noise
# ------ Eventually decode from latent space into image space--------
if self.latent_embedder is not None:
x_t = self.latent_embedder.decode(x_t)
return x_t # Should be x_0 in final step (t=0)
@torch.no_grad()
def sample(self, num_samples, img_size, condition=None, **kwargs):
template = torch.zeros((num_samples, *img_size), device=self.device)
x_T = self.noise_scheduler.x_final(template)
x_0 = self.denoise(x_T, condition=condition, **kwargs)
return x_0
@torch.no_grad()
def interpolate(self, img1, img2, i = None, condition=None, lam = 0.5, **kwargs):
assert img1.shape == img2.shape, "Image 1 and 2 must have equal shape"
t = self.noise_scheduler.T-1 if i is None else i
t = torch.full(img1.shape[:1], i, device=img1.device)
img1_t = self.noise_scheduler.estimate_x_t(img1, t=t, clip_x0=self.clip_x0)
img2_t = self.noise_scheduler.estimate_x_t(img2, t=t, clip_x0=self.clip_x0)
img = (1 - lam) * img1_t + lam * img2_t
img = self.denoise(img, i, condition, **kwargs)
return img
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.ema_model.step(self.noise_estimator)
def configure_optimizers(self):
optimizer = self.optimizer(self.noise_estimator.parameters(), **self.optimizer_kwargs)
if self.lr_scheduler is not None:
lr_scheduler = {
'scheduler': self.lr_scheduler(optimizer, **self.lr_scheduler_kwargs),
'interval': 'step',
'frequency': 1
}
return [optimizer], [lr_scheduler]
else:
return [optimizer] |