File size: 17,691 Bytes
f85e212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
from typing import Optional, Sequence, Tuple, Union, Type

import torch 
import torch.nn as nn 
import torch.nn.functional as F
import numpy as np 


from monai.networks.blocks.dynunet_block import get_padding, get_output_padding
from monai.networks.layers import Pool, Conv
from monai.networks.layers.utils import get_act_layer, get_norm_layer, get_dropout_layer
from monai.utils.misc import ensure_tuple_rep

from medical_diffusion.models.utils.attention_blocks import Attention, zero_module

def save_add(*args):
    args = [arg for arg in args if arg is not None]
    return sum(args) if len(args)>0 else None 


class SequentialEmb(nn.Sequential):
    def forward(self, input, emb):
        for module in self:
            input = module(input, emb)
        return input


class BasicDown(nn.Module):
    def __init__(
        self,
        spatial_dims,
        in_channels,
        out_channels,
        kernel_size=3,
        stride=2,
        learnable_interpolation=True,
        use_res=False
        ) -> None:
        super().__init__()

        if learnable_interpolation:
            Convolution = Conv[Conv.CONV, spatial_dims]
            self.down_op = Convolution(
                in_channels,
                out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=get_padding(kernel_size, stride),
                dilation=1,
                groups=1,
                bias=True,
            )
            
            if use_res:
                self.down_skip = nn.PixelUnshuffle(2) # WARNING: Only supports 2D, , out_channels == 4*in_channels
    
        else:
            Pooling = Pool['avg', spatial_dims]
            self.down_op = Pooling(
                kernel_size=kernel_size,
                stride=stride,
                padding=get_padding(kernel_size, stride)
            )


    def forward(self, x, emb=None):
        y = self.down_op(x)
        if hasattr(self, 'down_skip'):
            y = y+self.down_skip(x)
        return y 

class BasicUp(nn.Module):
    def __init__(
        self,
        spatial_dims,
        in_channels,
        out_channels,
        kernel_size=2,
        stride=2,
        learnable_interpolation=True,
        use_res=False,
        ) -> None:
        super().__init__()
        self.learnable_interpolation = learnable_interpolation
        if learnable_interpolation:
            # TransConvolution = Conv[Conv.CONVTRANS, spatial_dims]
            # padding = get_padding(kernel_size, stride)
            # output_padding = get_output_padding(kernel_size, stride, padding)
            # self.up_op = TransConvolution(
            #     in_channels,
            #     out_channels,
            #     kernel_size=kernel_size,
            #     stride=stride,
            #     padding=padding,
            #     output_padding=output_padding,
            #     groups=1,
            #     bias=True,
            #     dilation=1
            # )

            self.calc_shape = lambda x: tuple((np.asarray(x)-1)*np.atleast_1d(stride)+np.atleast_1d(kernel_size)
                                            -2*np.atleast_1d(get_padding(kernel_size, stride)))
            Convolution = Conv[Conv.CONV, spatial_dims]
            self.up_op = Convolution(
                in_channels,
                out_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1,
                groups=1,
                bias=True,
        )

            if use_res:
                self.up_skip = nn.PixelShuffle(2) # WARNING: Only supports 2D, out_channels == in_channels/4
        else:
            self.calc_shape = lambda x: tuple((np.asarray(x)-1)*np.atleast_1d(stride)+np.atleast_1d(kernel_size)
                                            -2*np.atleast_1d(get_padding(kernel_size, stride)))
    
    def forward(self, x, emb=None):
        if self.learnable_interpolation:
            new_size = self.calc_shape(x.shape[2:]) 
            x_res = F.interpolate(x, size=new_size, mode='nearest-exact')
            y = self.up_op(x_res)
            if hasattr(self, 'up_skip'):
                y = y+self.up_skip(x)
            return y 
        else:
            new_size = self.calc_shape(x.shape[2:]) 
            return F.interpolate(x, size=new_size, mode='nearest-exact')


class BasicBlock(nn.Module):
    """
    A block that consists of Conv-Norm-Drop-Act, similar to blocks.Convolution. 
    
    Args:
        spatial_dims: number of spatial dimensions.
        in_channels: number of input channels.
        out_channels: number of output channels.
        kernel_size: convolution kernel size.
        stride: convolution stride.
        norm_name: feature normalization type and arguments.
        act_name: activation layer type and arguments.
        dropout: dropout probability.
        zero_conv: zero out the parameters of the convolution.  
    """

    def __init__(
        self,
        spatial_dims: int,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[Sequence[int], int],
        stride: Union[Sequence[int], int]=1,
        norm_name: Union[Tuple, str, None]=None,
        act_name: Union[Tuple, str, None] = None,
        dropout: Optional[Union[Tuple, str, float]] = None,
        zero_conv: bool = False,
    ):
        super().__init__()
        Convolution = Conv[Conv.CONV, spatial_dims]
        conv = Convolution(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=get_padding(kernel_size, stride),
            dilation=1,
            groups=1,
            bias=True,
        )
        self.conv = zero_module(conv) if zero_conv else conv 
        
        if norm_name is not None:
            self.norm = get_norm_layer(name=norm_name, spatial_dims=spatial_dims, channels=out_channels)  
        if dropout is not None:
            self.drop = get_dropout_layer(name=dropout, dropout_dim=spatial_dims)
        if act_name is not None:
            self.act = get_act_layer(name=act_name)
        

    def forward(self, inp):
        out = self.conv(inp)
        if hasattr(self, "norm"):
            out = self.norm(out)  
        if hasattr(self, 'drop'):
            out = self.drop(out)
        if hasattr(self, "act"):
            out = self.act(out) 
        return out

class BasicResBlock(nn.Module):
    """
        A block that consists of Conv-Act-Norm + skip. 
    
    Args:
        spatial_dims: number of spatial dimensions.
        in_channels: number of input channels.
        out_channels: number of output channels.
        kernel_size: convolution kernel size.
        stride: convolution stride.
        norm_name: feature normalization type and arguments.
        act_name: activation layer type and arguments.
        dropout: dropout probability.
        zero_conv: zero out the parameters of the convolution.
    """
    def __init__(
        self,
        spatial_dims: int,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[Sequence[int], int],
        stride: Union[Sequence[int], int]=1,
        norm_name: Union[Tuple, str, None]=None,
        act_name: Union[Tuple, str, None] = None,
        dropout: Optional[Union[Tuple, str, float]] = None,
        zero_conv: bool = False
    ):
        super().__init__()
        self.basic_block = BasicBlock(spatial_dims, in_channels, out_channels, kernel_size, stride, norm_name, act_name, dropout, zero_conv) 
        Convolution = Conv[Conv.CONV, spatial_dims]
        self.conv_res = Convolution(
            in_channels,
            out_channels,
            kernel_size=1,
            stride=stride,
            padding=get_padding(1, stride),
            dilation=1,
            groups=1,
            bias=True,
        ) if in_channels != out_channels else nn.Identity()

    
    def forward(self, inp):
        out = self.basic_block(inp)
        residual = self.conv_res(inp)
        out = out+residual
        return out



class UnetBasicBlock(nn.Module):
    """
    A modified version of monai.networks.blocks.UnetBasicBlock with additional embedding

    Args:
        spatial_dims: number of spatial dimensions.
        in_channels: number of input channels.
        out_channels: number of output channels.
        kernel_size: convolution kernel size.
        stride: convolution stride.
        norm_name: feature normalization type and arguments.
        act_name: activation layer type and arguments.
        dropout: dropout probability.
        emb_channels: Number of embedding channels 
    """

    def __init__(
        self,
        spatial_dims: int,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[Sequence[int], int],
        stride: Union[Sequence[int], int]=1,
        norm_name: Union[Tuple, str]=None,
        act_name: Union[Tuple, str]=None,
        dropout: Optional[Union[Tuple, str, float]] = None,
        emb_channels: int = None,
        blocks = 2
    ):
        super().__init__()
        self.block_seq = nn.ModuleList([
            BasicBlock(spatial_dims, in_channels if i==0 else out_channels, out_channels, kernel_size, stride, norm_name, act_name, dropout, i==blocks-1)
            for i in range(blocks)
        ])
        
        if emb_channels is not None:
            self.local_embedder = nn.Sequential(
                get_act_layer(name=act_name),
                nn.Linear(emb_channels, out_channels),  
            ) 

    def forward(self, x, emb=None):
        # ------------ Embedding ----------
        if emb is not None:
            emb = self.local_embedder(emb) 
            b,c, *_ = emb.shape 
            sp_dim = x.ndim-2
            emb = emb.reshape(b, c, *((1,)*sp_dim) )
            # scale, shift = emb.chunk(2, dim = 1)
            # x = x * (scale + 1) + shift
            # x = x+emb

        # ----------- Convolution ---------
        n_blocks = len(self.block_seq)
        for i, block in enumerate(self.block_seq):
            x = block(x)
            if (emb is not None) and i<n_blocks:
                x += emb 
        return x 


class UnetResBlock(nn.Module):
    """
    A modified version of monai.networks.blocks.UnetResBlock with additional skip connection and embedding

    Args:
        spatial_dims: number of spatial dimensions.
        in_channels: number of input channels.
        out_channels: number of output channels.
        kernel_size: convolution kernel size.
        stride: convolution stride.
        norm_name: feature normalization type and arguments.
        act_name: activation layer type and arguments.
        dropout: dropout probability.
        emb_channels: Number of embedding channels 
    """

    def __init__(
        self,
        spatial_dims: int,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[Sequence[int], int],
        stride: Union[Sequence[int], int]=1,
        norm_name: Union[Tuple, str]=None,
        act_name: Union[Tuple, str]=None,
        dropout: Optional[Union[Tuple, str, float]] = None,
        emb_channels: int = None,
        blocks = 2
    ):
        super().__init__()
        self.block_seq = nn.ModuleList([
            BasicResBlock(spatial_dims, in_channels if i==0 else out_channels, out_channels, kernel_size, stride, norm_name, act_name, dropout, i==blocks-1)
            for i in range(blocks)
        ])

        if emb_channels is not None:
            self.local_embedder = nn.Sequential(
                get_act_layer(name=act_name),
                nn.Linear(emb_channels, out_channels),  
            ) 


    def forward(self, x, emb=None):
        # ------------ Embedding ----------
        if emb is not None:
            emb = self.local_embedder(emb) 
            b,c, *_ = emb.shape 
            sp_dim = x.ndim-2
            emb = emb.reshape(b, c, *((1,)*sp_dim) )
            # scale, shift = emb.chunk(2, dim = 1)
            # x = x * (scale + 1) + shift
            # x = x+emb

        # ----------- Convolution ---------
        n_blocks = len(self.block_seq)
        for i, block in enumerate(self.block_seq):
            x = block(x)
            if (emb is not None) and i<n_blocks-1:
                x += emb 
        return x 



class DownBlock(nn.Module):
    def __init__(
        self,
        spatial_dims: int,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[Sequence[int], int],
        stride: Union[Sequence[int], int],
        downsample_kernel_size: Union[Sequence[int], int],
        norm_name: Union[Tuple, str],
        act_name: Union[Tuple, str],
        dropout: Optional[Union[Tuple, str, float]] = None,
        use_res_block: bool = False,
        learnable_interpolation: bool = True,
        use_attention: str = 'none',
        emb_channels: int = None
    ):
        super(DownBlock, self).__init__()
        enable_down = ensure_tuple_rep(stride, spatial_dims) != ensure_tuple_rep(1, spatial_dims)
        down_out_channels = out_channels if learnable_interpolation and enable_down else in_channels
      
        # -------------- Down ----------------------
        self.down_op = BasicDown(
            spatial_dims,
            in_channels,
            out_channels,
            kernel_size=downsample_kernel_size,
            stride=stride,
            learnable_interpolation=learnable_interpolation,
            use_res=False
        ) if enable_down else nn.Identity()
       

        # ---------------- Attention -------------
        self.attention = Attention(
            spatial_dims=spatial_dims,
            in_channels=down_out_channels,
            out_channels=down_out_channels,
            num_heads=8,
            ch_per_head=down_out_channels//8,
            depth=1,
            norm_name=norm_name,
            dropout=dropout,
            emb_dim=emb_channels,
            attention_type=use_attention
        )
       
        # -------------- Convolution ----------------------
        ConvBlock = UnetResBlock if use_res_block else UnetBasicBlock
        self.conv_block = ConvBlock(
            spatial_dims,
            down_out_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=1,
            dropout=dropout,
            norm_name=norm_name,
            act_name=act_name,
            emb_channels=emb_channels 
        )

        
    def forward(self, x, emb=None):  
        # ----------- Down ---------
        x = self.down_op(x)
        
        # ----------- Attention -------------
        if self.attention is not None: 
            x = self.attention(x, emb) 

        # ------------- Convolution --------------
        x = self.conv_block(x, emb)

        return x


class UpBlock(nn.Module):
    def __init__(
        self, 
        spatial_dims, 
        in_channels: int, 
        out_channels: int,
        kernel_size: Union[Sequence[int], int],
        stride: Union[Sequence[int], int],
        upsample_kernel_size: Union[Sequence[int], int],
        norm_name: Union[Tuple, str],
        act_name: Union[Tuple, str],
        dropout: Optional[Union[Tuple, str, float]] = None,
        use_res_block: bool = False,
        learnable_interpolation: bool = True,
        use_attention: str = 'none',
        emb_channels: int = None, 
        skip_channels: int = 0
    ):
        super(UpBlock, self).__init__()
        enable_up = ensure_tuple_rep(stride, spatial_dims) != ensure_tuple_rep(1, spatial_dims)
        skip_out_channels = out_channels if learnable_interpolation and enable_up else in_channels+skip_channels
        self.learnable_interpolation = learnable_interpolation     
        

        # -------------- Up ----------------------
        self.up_op = BasicUp(
            spatial_dims=spatial_dims,
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=upsample_kernel_size,
            stride=stride,
            learnable_interpolation=learnable_interpolation,
            use_res=False
        ) if enable_up else nn.Identity()

        # ---------------- Attention -------------
        self.attention = Attention(
            spatial_dims=spatial_dims,
            in_channels=skip_out_channels,
            out_channels=skip_out_channels,
            num_heads=8,
            ch_per_head=skip_out_channels//8,
            depth=1,
            norm_name=norm_name,
            dropout=dropout,
            emb_dim=emb_channels,
            attention_type=use_attention
        )

    
        # -------------- Convolution ----------------------
        ConvBlock = UnetResBlock if use_res_block else UnetBasicBlock
        self.conv_block = ConvBlock(
            spatial_dims,
            skip_out_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=1,
            dropout=dropout,
            norm_name=norm_name,
            act_name=act_name,
            emb_channels=emb_channels
        )



    def forward(self, x_enc, x_skip=None, emb=None): 
        # ----------- Up -------------
        x = self.up_op(x_enc)

        # ----------- Skip Connection ------------
        if x_skip is not None:
            if self.learnable_interpolation: # Channel of x_enc and x_skip are equal and summation is possible 
                x = x+x_skip
            else:
                x = torch.cat((x, x_skip), dim=1)

        # ----------- Attention -------------
        if self.attention is not None: 
            x = self.attention(x, emb)      

        # ----------- Convolution ------------
        x = self.conv_block(x, emb)

        return x