File size: 6,248 Bytes
f85e212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

from email.mime import audio
from pathlib import Path
from datetime import datetime

import torch 
import torch.nn as nn
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
import numpy as np 
import torchio as tio 

from medical_diffusion.data.datamodules import SimpleDataModule
from medical_diffusion.data.datasets import AIROGSDataset, MSIvsMSS_2_Dataset, CheXpert_2_Dataset
from medical_diffusion.models.pipelines import DiffusionPipeline
from medical_diffusion.models.estimators import UNet
from medical_diffusion.external.stable_diffusion.unet_openai import UNetModel
from medical_diffusion.models.noise_schedulers import GaussianNoiseScheduler
from medical_diffusion.models.embedders import LabelEmbedder, TimeEmbbeding
from medical_diffusion.models.embedders.latent_embedders import VAE, VAEGAN, VQVAE, VQGAN

import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')



if __name__ == "__main__":
    # ------------ Load Data ----------------
    # ds = AIROGSDataset(
    #     crawler_ext='jpg',
    #     augment_horizontal_flip = False,
    #     augment_vertical_flip = False, 
    #     # path_root='/home/gustav/Documents/datasets/AIROGS/data_256x256/',
    #     path_root='/mnt/hdd/datasets/eye/AIROGS/data_256x256',
    # )

    # ds = MSIvsMSS_2_Dataset(
    #     crawler_ext='jpg',
    #     image_resize=None,
    #     image_crop=None,
    #     augment_horizontal_flip=False,
    #     augment_vertical_flip=False, 
    #     # path_root='/home/gustav/Documents/datasets/Kather_2/train',
    #     path_root='/mnt/hdd/datasets/pathology/kather_msi_mss_2/train/',
    # )

    ds = CheXpert_2_Dataset( #  256x256
        augment_horizontal_flip=False,
        augment_vertical_flip=False,
        path_root = '/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/preprocessed_tianyu'
    )
  
    dm = SimpleDataModule(
        ds_train = ds,
        batch_size=32, 
        # num_workers=0,
        pin_memory=True,
        # weights=ds.get_weights()
    ) 
    
    current_time = datetime.now().strftime("%Y_%m_%d_%H%M%S")
    path_run_dir = Path.cwd() / 'runs' / str(current_time)
    path_run_dir.mkdir(parents=True, exist_ok=True)
    accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'



    # ------------ Initialize Model ------------
    # cond_embedder = None 
    cond_embedder = LabelEmbedder
    cond_embedder_kwargs = {
        'emb_dim': 1024,
        'num_classes': 2
    }
 

    time_embedder = TimeEmbbeding
    time_embedder_kwargs ={
        'emb_dim': 1024 # stable diffusion uses 4*model_channels (model_channels is about 256)
    }


    noise_estimator = UNet
    noise_estimator_kwargs = {
        'in_ch':8, 
        'out_ch':8, 
        'spatial_dims':2,
        'hid_chs':  [  256, 256, 512, 1024],
        'kernel_sizes':[3, 3, 3, 3],
        'strides':     [1, 2, 2, 2],
        'time_embedder':time_embedder,
        'time_embedder_kwargs': time_embedder_kwargs,
        'cond_embedder':cond_embedder,
        'cond_embedder_kwargs': cond_embedder_kwargs,
        'deep_supervision': False,
        'use_res_block':True,
        'use_attention':'none',
    }


    # ------------ Initialize Noise ------------
    noise_scheduler = GaussianNoiseScheduler
    noise_scheduler_kwargs = {
        'timesteps': 1000,
        'beta_start': 0.002, # 0.0001, 0.0015
        'beta_end': 0.02, # 0.01, 0.0195
        'schedule_strategy': 'scaled_linear'
    }
    
    # ------------ Initialize Latent Space  ------------
    # latent_embedder = None 
    # latent_embedder = VQVAE
    latent_embedder = VAE
    latent_embedder_checkpoint = 'runs/2022_12_12_133315_chest_vaegan/last_vae.ckpt'
   
    # ------------ Initialize Pipeline ------------
    pipeline = DiffusionPipeline(
        noise_estimator=noise_estimator, 
        noise_estimator_kwargs=noise_estimator_kwargs,
        noise_scheduler=noise_scheduler, 
        noise_scheduler_kwargs = noise_scheduler_kwargs,
        latent_embedder=latent_embedder,
        latent_embedder_checkpoint = latent_embedder_checkpoint,
        estimator_objective='x_T',
        estimate_variance=False, 
        use_self_conditioning=False, 
        use_ema=False,
        classifier_free_guidance_dropout=0.5, # Disable during training by setting to 0
        do_input_centering=False,
        clip_x0=False,
        sample_every_n_steps=1000
    )
    
    # pipeline_old = pipeline.load_from_checkpoint('runs/2022_11_27_085654_chest_diffusion/last.ckpt')
    # pipeline.noise_estimator.load_state_dict(pipeline_old.noise_estimator.state_dict(), strict=True)

    # -------------- Training Initialization ---------------
    to_monitor = "train/loss"  # "pl/val_loss" 
    min_max = "min"
    save_and_sample_every = 100

    early_stopping = EarlyStopping(
        monitor=to_monitor,
        min_delta=0.0, # minimum change in the monitored quantity to qualify as an improvement
        patience=30, # number of checks with no improvement
        mode=min_max
    )
    checkpointing = ModelCheckpoint(
        dirpath=str(path_run_dir), # dirpath
        monitor=to_monitor,
        every_n_train_steps=save_and_sample_every,
        save_last=True,
        save_top_k=2,
        mode=min_max,
    )
    trainer = Trainer(
        accelerator=accelerator,
        # devices=[0],
        # precision=16,
        # amp_backend='apex',
        # amp_level='O2',
        # gradient_clip_val=0.5,
        default_root_dir=str(path_run_dir),
        callbacks=[checkpointing],
        # callbacks=[checkpointing, early_stopping],
        enable_checkpointing=True,
        check_val_every_n_epoch=1,
        log_every_n_steps=save_and_sample_every, 
        auto_lr_find=False,
        # limit_train_batches=1000,
        limit_val_batches=0, # 0 = disable validation - Note: Early Stopping no longer available 
        min_epochs=100,
        max_epochs=1001,
        num_sanity_val_steps=2,
    )
    
    # ---------------- Execute Training ----------------
    trainer.fit(pipeline, datamodule=dm)

    # ------------- Save path to best model -------------
    pipeline.save_best_checkpoint(trainer.logger.log_dir, checkpointing.best_model_path)