File size: 1,764 Bytes
f85e212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


from pathlib import Path 
from torchvision.utils import save_image
import pandas as pd 
import torch 
import torch.nn.functional as F
from medical_diffusion.data.datasets import CheXpert_Dataset
import math

path_out = Path().cwd()/'results'/'test'/'CheXpert'
path_out.mkdir(parents=True, exist_ok=True)

# path_root = Path('/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/train')
path_root = Path('/media/NAS/Chexpert_dataset/CheXpert-v1.0/train')
mode = path_root.name
labels = pd.read_csv(path_root.parent/f'{mode}.csv', index_col='Path')
labels = labels[labels['Frontal/Lateral'] == 'Frontal']
labels.loc[labels['Sex'] == 'Unknown', 'Sex'] = 'Female' # Must be "female"  to match paper data
labels.fillna(3, inplace=True) 
str_2_int = {'Sex': {'Male':0, 'Female':1}, 'Frontal/Lateral':{'Frontal':0, 'Lateral':1}, 'AP/PA':{'AP':0, 'PA':1, 'LL':2, 'RL':3}}
labels.replace(str_2_int, inplace=True)

# Get patients 
labels['patient'] = labels.index.str.split('/').str[2]
labels.set_index('patient',drop=True, append=True, inplace=True)

for c in labels.columns:
    print(labels[c].value_counts(dropna=False))

ds = CheXpert_Dataset(
    crawler_ext='jpg',
    image_resize=(256, 256),
    # image_crop=(256, 256),
    path_root=path_root,
)




x = torch.stack([ds[n]['source'] for n in range(4)])
b = x.shape[0]
save_image(x, path_out/'samples_down_0.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True )

size_0 = torch.tensor(x.shape[2:])

for i in range(3): 
    new_size = torch.div(size_0, 2**(i+1), rounding_mode='floor' )
    x_i = F.interpolate(x, size=tuple(new_size), mode='nearest', align_corners=None)  
    print(x_i.shape)
    save_image(x_i, path_out/f'samples_down_{i+1}.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True)