Spaces:
Runtime error
Runtime error
import math | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class AttentionBlock(nn.Module): | |
""" | |
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted | |
to the N-d case. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
Uses three q, k, v linear layers to compute attention. | |
Parameters: | |
channels (:obj:`int`): The number of channels in the input and output. | |
num_head_channels (:obj:`int`, *optional*): | |
The number of channels in each head. If None, then `num_heads` = 1. | |
num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm. | |
rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by. | |
eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
num_head_channels: Optional[int] = None, | |
num_groups: int = 32, | |
rescale_output_factor: float = 1.0, | |
eps: float = 1e-5, | |
): | |
super().__init__() | |
self.channels = channels | |
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 | |
self.num_head_size = num_head_channels | |
self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True) | |
# define q,k,v as linear layers | |
self.query = nn.Linear(channels, channels) | |
self.key = nn.Linear(channels, channels) | |
self.value = nn.Linear(channels, channels) | |
self.rescale_output_factor = rescale_output_factor | |
self.proj_attn = nn.Linear(channels, channels, 1) | |
def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor: | |
new_projection_shape = projection.size()[:-1] + (self.num_heads, -1) | |
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) | |
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) | |
return new_projection | |
def forward(self, hidden_states): | |
residual = hidden_states | |
batch, channel, height, width = hidden_states.shape | |
# norm | |
hidden_states = self.group_norm(hidden_states) | |
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) | |
# proj to q, k, v | |
query_proj = self.query(hidden_states) | |
key_proj = self.key(hidden_states) | |
value_proj = self.value(hidden_states) | |
# transpose | |
query_states = self.transpose_for_scores(query_proj) | |
key_states = self.transpose_for_scores(key_proj) | |
value_states = self.transpose_for_scores(value_proj) | |
# get scores | |
scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads)) | |
attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) | |
attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype) | |
# compute attention output | |
hidden_states = torch.matmul(attention_probs, value_states) | |
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous() | |
new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,) | |
hidden_states = hidden_states.view(new_hidden_states_shape) | |
# compute next hidden_states | |
hidden_states = self.proj_attn(hidden_states) | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) | |
# res connect and rescale | |
hidden_states = (hidden_states + residual) / self.rescale_output_factor | |
return hidden_states | |
class SpatialTransformer(nn.Module): | |
""" | |
Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply | |
standard transformer action. Finally, reshape to image. | |
Parameters: | |
in_channels (:obj:`int`): The number of channels in the input and output. | |
n_heads (:obj:`int`): The number of heads to use for multi-head attention. | |
d_head (:obj:`int`): The number of channels in each head. | |
depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use. | |
context_dim (:obj:`int`, *optional*): The number of context dimensions to use. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
n_heads: int, | |
d_head: int, | |
depth: int = 1, | |
dropout: float = 0.0, | |
num_groups: int = 32, | |
context_dim: Optional[int] = None, | |
): | |
super().__init__() | |
self.n_heads = n_heads | |
self.d_head = d_head | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) | |
for d in range(depth) | |
] | |
) | |
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
def _set_attention_slice(self, slice_size): | |
for block in self.transformer_blocks: | |
block._set_attention_slice(slice_size) | |
def forward(self, hidden_states, context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
batch, channel, height, weight = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
hidden_states = self.proj_in(hidden_states) | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, channel) | |
for block in self.transformer_blocks: | |
hidden_states = block(hidden_states, context=context) | |
hidden_states = hidden_states.reshape(batch, height, weight, channel).permute(0, 3, 1, 2) | |
hidden_states = self.proj_out(hidden_states) | |
return hidden_states + residual | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (:obj:`int`): The number of channels in the input and output. | |
n_heads (:obj:`int`): The number of heads to use for multi-head attention. | |
d_head (:obj:`int`): The number of channels in each head. | |
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention. | |
gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network. | |
checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
n_heads: int, | |
d_head: int, | |
dropout=0.0, | |
context_dim: Optional[int] = None, | |
gated_ff: bool = True, | |
checkpoint: bool = True, | |
): | |
super().__init__() | |
self.attn1 = CrossAttention( | |
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
) # is a self-attention | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = CrossAttention( | |
query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def _set_attention_slice(self, slice_size): | |
self.attn1._slice_size = slice_size | |
self.attn2._slice_size = slice_size | |
def forward(self, hidden_states, context=None): | |
hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states | |
hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states | |
hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
return hidden_states | |
class CrossAttention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (:obj:`int`): The number of channels in the query. | |
context_dim (:obj:`int`, *optional*): | |
The number of channels in the context. If not given, defaults to `query_dim`. | |
heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
""" | |
def __init__( | |
self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0 | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = context_dim if context_dim is not None else query_dim | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self._slice_size = None | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
def reshape_heads_to_batch_dim(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def reshape_batch_dim_to_heads(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def forward(self, hidden_states, context=None, mask=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
query = self.to_q(hidden_states) | |
context = context if context is not None else hidden_states | |
key = self.to_k(context) | |
value = self.to_v(context) | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
# TODO(PVP) - mask is currently never used. Remember to re-implement when used | |
# attention, what we cannot get enough of | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim) | |
return self.to_out(hidden_states) | |
def _attention(self, query, key, value): | |
attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale | |
attention_probs = attention_scores.softmax(dim=-1) | |
# compute attention output | |
hidden_states = torch.matmul(attention_probs, value) | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _sliced_attention(self, query, key, value, sequence_length, dim): | |
batch_size_attention = query.shape[0] | |
hidden_states = torch.zeros( | |
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
) | |
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
for i in range(hidden_states.shape[0] // slice_size): | |
start_idx = i * slice_size | |
end_idx = (i + 1) * slice_size | |
attn_slice = torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale | |
attn_slice = attn_slice.softmax(dim=-1) | |
attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx]) | |
hidden_states[start_idx:end_idx] = attn_slice | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (:obj:`int`): The number of channels in the input. | |
dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation. | |
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
""" | |
def __init__( | |
self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0 | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
project_in = GEGLU(dim, inner_dim) | |
self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) | |
def forward(self, hidden_states): | |
return self.net(hidden_states) | |
# feedforward | |
class GEGLU(nn.Module): | |
r""" | |
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. | |
Parameters: | |
dim_in (:obj:`int`): The number of channels in the input. | |
dim_out (:obj:`int`): The number of channels in the output. | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, hidden_states): | |
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) | |
return hidden_states * F.gelu(gate) | |