mueller-franzes's picture
init
f85e212
raw
history blame
1.92 kB
from medical_diffusion.models.noise_schedulers import GaussianNoiseScheduler
from medical_diffusion.data.datasets import SimpleDataset2D, AIROGSDataset
from medical_diffusion.models.embedders.latent_embedders import VQVAE
import torch
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
from math import ceil
import statsmodels.api as sm
device = torch.device('cuda')
path_out = Path.cwd()/'results/test'
torch.manual_seed(0)
ds = AIROGSDataset(
crawler_ext='jpg',
image_resize=(256, 256),
image_crop=(256, 256),
path_root='/home/gustav/Documents/datasets/AIROGS/dataset', # '/home/gustav/Documents/datasets/AIROGS/dataset', /mnt/hdd/datasets/eye/AIROGS/data/
)
x_0 = ds[0]['source'][None] # [B, C, H, W]
scheduler = GaussianNoiseScheduler(timesteps=500, schedule_strategy='scaled_linear')
# embedder = VQVAE.load_from_checkpoint('runs/2022_10_06_233542_vqvae_eye/last.ckpt')
# with torch.no_grad():
# x_0 = embedder.encode(x_0)
noise = torch.randn_like(x_0)
step=100
binrange=(-2.5,2.5)
bins = 50
ncols=8
nelem = (scheduler.T+step)//step+2
nrows = ceil(nelem/8)
fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*3, nrows*3))
ax_iter = iter(ax.flatten())
for axis in ax_iter:
axis.spines['top'].set_visible(False)
axis.spines['right'].set_visible(False)
axis.spines['left'].set_visible(False)
axis.axes.get_yaxis().set_visible(False)
ax_iter = iter(ax.flatten())
axis = next(ax_iter)
sm.qqplot(x_0.flatten(), line='45', ax=axis)
for t in range(0, scheduler.T+step, step):
print(t)
t = torch.tensor([t])
x_t = scheduler.estimate_x_t(x_0=x_0, t=t, x_T=noise) # [B, C, H, W]
axis = next(ax_iter)
sm.qqplot(x_t.flatten(), line='45', ax=axis)
axis = next(ax_iter)
sm.qqplot(noise.flatten(), line='45', ax=axis)
fig.tight_layout()
fig.savefig(path_out/'scheduler_nosing_qq.png')