Spaces:
Runtime error
Runtime error
import torch | |
class LambdaLinearScheduler: | |
def __init__(self, warm_up_steps=[10000,], f_min=[1.0,], f_max=[1.0,], f_start=[1.e-6], cycle_lengths=[10000000000000], verbosity_interval=0): | |
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths) | |
self.lr_warm_up_steps = warm_up_steps | |
self.f_start = f_start | |
self.f_min = f_min | |
self.f_max = f_max | |
self.cycle_lengths = cycle_lengths | |
self.cum_cycles = torch.cumsum(torch.tensor([0] + list(self.cycle_lengths)), 0) | |
self.last_f = 0. | |
self.verbosity_interval = verbosity_interval | |
def find_in_interval(self, n): | |
interval = 0 | |
for cl in self.cum_cycles[1:]: | |
if n <= cl: | |
return interval | |
interval += 1 | |
def schedule(self, n, **kwargs): | |
cycle = self.find_in_interval(n) | |
n = n - self.cum_cycles[cycle] | |
if n < self.lr_warm_up_steps[cycle]: | |
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle] | |
self.last_f = f | |
return f | |
else: | |
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle]) | |
self.last_f = f | |
return f |