mueller-franzes's picture
init
f85e212
from medical_diffusion.models.noise_schedulers import GaussianNoiseScheduler
from medical_diffusion.data.datasets import SimpleDataset2D, AIROGSDataset, CheXpert_Dataset, MSIvsMSS_2_Dataset
from medical_diffusion.models.embedders.latent_embedders import VAE, VAEGAN
import torch
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
from math import ceil
from torchvision.utils import save_image
# ds = SimpleDataset2D(
# crawler_ext='jpg',
# image_resize=(352, 528),
# image_crop=(192, 288),
# path_root='/home/gustav/Documents/datasets/AIROGS/dataset',
# )
# ds = AIROGSDataset(
# crawler_ext='jpg',
# image_resize=(256, 256),
# image_crop=(256, 256),
# path_root='/home/gustav/Documents/datasets/AIROGS/dataset', # '/home/gustav/Documents/datasets/AIROGS/dataset', /mnt/hdd/datasets/eye/AIROGS/data/
# )
# ds = CheXpert_Dataset(
# crawler_ext='jpg',
# augment_horizontal_flip=False,
# augment_vertical_flip=False,
# path_root='/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/preprocessed/valid',
# )
ds = MSIvsMSS_2_Dataset(
crawler_ext='jpg',
image_resize=None,
image_crop=None,
augment_horizontal_flip=False,
augment_vertical_flip=False,
# path_root='/home/gustav/Documents/datasets/Kather_2/train',
path_root='/mnt/hdd/datasets/pathology/kather_msi_mss_2/train/',
)
device = torch.device('cuda')
scheduler = GaussianNoiseScheduler(timesteps=1000, beta_start=1e-4, schedule_strategy='scaled_linear')
# scheduler.to(device)
path_out = Path.cwd()/'results/test/scheduler'
path_out.mkdir(parents=True, exist_ok=True)
# print(scheduler.posterior_mean_coef1)
torch.manual_seed(0)
x_0 = ds[0]['source'][None] # [B, C, H, W]
embedder = VAE.load_from_checkpoint('runs/2022_11_25_232957_patho_vaegan/last_vae.ckpt')
with torch.no_grad():
x_0 = embedder.encode(x_0)
# x_0 = (x_0-x_0.min())/(x_0.max()-x_0.min())
# x_0 = x_0*2-1
# x*2-1 = (x-0.5)*2
noise = torch.randn_like(x_0)
x_ts = []
step=100
for t in range(0, scheduler.T+step, step):
t = torch.tensor([t])
x_t = scheduler.estimate_x_t(x_0=x_0, t=t, x_T=noise) # [B, C, H, W]
print(t, x_t.mean(), x_t.std())
x_ts.append(x_t)
x_ts = torch.cat(x_ts)
# save_image(x_ts, path_out/'scheduler_nosing.png', normalize=True, scale_each=True)
binrange=(-2.5,2.5)
bins = 50
ncols=8
nelem = (scheduler.T+step)//step+2
nrows = ceil(nelem/8)
fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*3, nrows*3))
ax_iter = iter(ax.flatten())
for axis in ax_iter:
axis.spines['top'].set_visible(False)
axis.spines['right'].set_visible(False)
axis.spines['left'].set_visible(False)
axis.axes.get_yaxis().set_visible(False)
ax_iter = iter(ax.flatten())
axis = next(ax_iter)
sns.histplot(x=x_0.flatten(), bins=bins, binrange=binrange, ax=axis)
for t in range(0, scheduler.T+step, step):
print(t)
t = torch.tensor([t])
x_t = scheduler.estimate_x_t(x_0=x_0, t=t, x_T=noise) # [B, C, H, W]
axis = next(ax_iter)
sns.histplot(x=x_t.flatten(), bins=bins, binrange=binrange, ax=axis)
axis = next(ax_iter)
sns.histplot(x=noise.flatten(), bins=bins, binrange=binrange, ax=axis)
fig.tight_layout()
fig.savefig(path_out/'scheduler_nosing_histo.png')