from pathlib import Path from torchvision.utils import save_image import pandas as pd import torch import torch.nn.functional as F from medical_diffusion.data.datasets import CheXpert_Dataset import math path_out = Path().cwd()/'results'/'test'/'CheXpert' path_out.mkdir(parents=True, exist_ok=True) # path_root = Path('/mnt/hdd/datasets/chest/CheXpert/ChecXpert-v10/train') path_root = Path('/media/NAS/Chexpert_dataset/CheXpert-v1.0/train') mode = path_root.name labels = pd.read_csv(path_root.parent/f'{mode}.csv', index_col='Path') labels = labels[labels['Frontal/Lateral'] == 'Frontal'] labels.loc[labels['Sex'] == 'Unknown', 'Sex'] = 'Female' # Must be "female" to match paper data labels.fillna(3, inplace=True) str_2_int = {'Sex': {'Male':0, 'Female':1}, 'Frontal/Lateral':{'Frontal':0, 'Lateral':1}, 'AP/PA':{'AP':0, 'PA':1, 'LL':2, 'RL':3}} labels.replace(str_2_int, inplace=True) # Get patients labels['patient'] = labels.index.str.split('/').str[2] labels.set_index('patient',drop=True, append=True, inplace=True) for c in labels.columns: print(labels[c].value_counts(dropna=False)) ds = CheXpert_Dataset( crawler_ext='jpg', image_resize=(256, 256), # image_crop=(256, 256), path_root=path_root, ) x = torch.stack([ds[n]['source'] for n in range(4)]) b = x.shape[0] save_image(x, path_out/'samples_down_0.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True ) size_0 = torch.tensor(x.shape[2:]) for i in range(3): new_size = torch.div(size_0, 2**(i+1), rounding_mode='floor' ) x_i = F.interpolate(x, size=tuple(new_size), mode='nearest', align_corners=None) print(x_i.shape) save_image(x_i, path_out/f'samples_down_{i+1}.png', nrwos=int(math.sqrt(b)), normalize=True, scale_each=True)