from medical_diffusion.data.datasets import SimpleDataset2D, AIROGSDataset import torch.nn.functional as F import matplotlib.pyplot as plt from pathlib import Path from torchvision.utils import save_image path_out = Path().cwd()/'results'/'test' path_out.mkdir(parents=True, exist_ok=True) ds = AIROGSDataset( crawler_ext='jpg', image_resize=(256, 256), image_crop=(256, 256), path_root='/mnt/hdd/datasets/eye/AIROGS/data/', # '/home/gustav/Documents/datasets/AIROGS/dataset', '/mnt/hdd/datasets/eye/AIROGS/data/' ) weights = ds.get_weights() images = [ds[n]['source'] for n in range(4)] interpolation_mode = 'bilinear' images = [F.interpolate(img[None], size=[128, 128], mode=interpolation_mode, align_corners=None)[0] for img in images] images = [img/2+0.5 for img in images] save_image(images, path_out/'test.png')