from typing import Optional, Tuple, Union from pathlib import Path import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from itertools import chain from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block from .taming_discriminator import NLayerDiscriminator from medical_diffusion.models import BasicModel from torchvision.utils import save_image from torch.distributions.normal import Normal from torch.distributions import kl_divergence class Encoder(nn.Module): def __init__( self, in_channels=3, out_channels=3, down_block_types=("DownEncoderBlock2D",), block_out_channels=(64), layers_per_block=2, norm_num_groups=32, act_fn="silu", double_z=True, ): super().__init__() self.layers_per_block = layers_per_block self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) self.mid_block = None self.down_blocks = nn.ModuleList([]) # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i+1] is_final_block = False #i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=self.layers_per_block, in_channels=input_channel, out_channels=output_channel, add_downsample=not is_final_block, resnet_eps=1e-6, downsample_padding=0, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attn_num_head_channels=None, temb_channels=None, ) self.down_blocks.append(down_block) # mid self.mid_block = UNetMidBlock2D( in_channels=block_out_channels[-1], resnet_eps=1e-6, resnet_act_fn=act_fn, output_scale_factor=1, resnet_time_scale_shift="default", attn_num_head_channels=None, resnet_groups=norm_num_groups, temb_channels=None, ) # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) self.conv_act = nn.SiLU() conv_out_channels = 2 * out_channels if double_z else out_channels self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) def forward(self, x): sample = x sample = self.conv_in(sample) # down for down_block in self.down_blocks: sample = down_block(sample) # middle sample = self.mid_block(sample) # post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) return sample class Decoder(nn.Module): def __init__( self, in_channels=3, out_channels=3, up_block_types=("UpDecoderBlock2D",), block_out_channels=(64,), layers_per_block=2, norm_num_groups=32, act_fn="silu", ): super().__init__() self.layers_per_block = layers_per_block self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) self.mid_block = None self.up_blocks = nn.ModuleList([]) # mid self.mid_block = UNetMidBlock2D( in_channels=block_out_channels[-1], resnet_eps=1e-6, resnet_act_fn=act_fn, output_scale_factor=1, resnet_time_scale_shift="default", attn_num_head_channels=None, resnet_groups=norm_num_groups, temb_channels=None, ) # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i+1] is_final_block = False # i == len(block_out_channels) - 1 up_block = get_up_block( up_block_type, num_layers=self.layers_per_block + 1, in_channels=prev_output_channel, out_channels=output_channel, prev_output_channel=None, add_upsample=not is_final_block, resnet_eps=1e-6, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attn_num_head_channels=None, temb_channels=None, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) self.conv_act = nn.SiLU() self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) def forward(self, z): sample = z sample = self.conv_in(sample) # middle sample = self.mid_block(sample) # up for up_block in self.up_blocks: sample = up_block(sample) # post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) return sample class VectorQuantizer(nn.Module): """ Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix multiplications and allows for post-hoc remapping of indices. """ # NOTE: due to a bug the beta term was applied to the wrong term. for # backwards compatibility we use the buggy version by default, but you can # specify legacy=False to fix it. def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=False): super().__init__() self.n_e = n_e self.e_dim = e_dim self.beta = beta self.legacy = legacy self.embedding = nn.Embedding(self.n_e, self.e_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) self.remap = remap if self.remap is not None: self.register_buffer("used", torch.tensor(np.load(self.remap))) self.re_embed = self.used.shape[0] self.unknown_index = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": self.unknown_index = self.re_embed self.re_embed = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: self.re_embed = n_e self.sane_index_shape = sane_index_shape def remap_to_used(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) match = (inds[:, :, None] == used[None, None, ...]).long() new = match.argmax(-1) unknown = match.sum(2) < 1 if self.unknown_index == "random": new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) else: new[unknown] = self.unknown_index return new.reshape(ishape) def unmap_to_all(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) if self.re_embed > self.used.shape[0]: # extra token inds[inds >= self.used.shape[0]] = 0 # simply set to zero back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) return back.reshape(ishape) def forward(self, z): # reshape z -> (batch, height, width, channel) and flatten z = z.permute(0, 2, 3, 1).contiguous() z_flattened = z.view(-1, self.e_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z d = ( torch.sum(z_flattened**2, dim=1, keepdim=True) + torch.sum(self.embedding.weight**2, dim=1) - 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t()) ) min_encoding_indices = torch.argmin(d, dim=1) z_q = self.embedding(min_encoding_indices).view(z.shape) perplexity = None min_encodings = None # compute loss for embedding if not self.legacy: loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients z_q = z + (z_q - z).detach() # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() if self.remap is not None: min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis min_encoding_indices = self.remap_to_used(min_encoding_indices) min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten if self.sane_index_shape: min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def get_codebook_entry(self, indices, shape): # shape specifying (batch, height, width, channel) if self.remap is not None: indices = indices.reshape(shape[0], -1) # add batch axis indices = self.unmap_to_all(indices) indices = indices.reshape(-1) # flatten again # get quantized latent vectors z_q = self.embedding(indices) if shape is not None: z_q = z_q.view(shape) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q class DiagonalGaussianDistribution(object): def __init__(self, parameters, deterministic=False): self.batch_size = parameters.shape[0] self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) # self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: device = self.parameters.device sample_device = "cpu" if device.type == "mps" else device sample = torch.randn(self.mean.shape, generator=generator, device=sample_device).to(device) x = self.mean + self.std * sample return x def kl(self, other=None): if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar)/self.batch_size else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, )/self.batch_size # q_z_x = Normal(self.mean, self.logvar.mul(.5).exp()) # p_z = Normal(torch.zeros_like(self.mean), torch.ones_like(self.logvar)) # kl_div = kl_divergence(q_z_x, p_z).sum(1).mean() # return kl_div def nll(self, sample, dims=[1, 2, 3]): if self.deterministic: return torch.Tensor([0.0]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) def mode(self): return self.mean class VQModel(nn.Module): r"""VQ-VAE model from the paper Neural Discrete Representation Learning by Aaron van den Oord, Oriol Vinyals and Koray Kavukcuoglu. This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the model (such as downloading or saving, etc.) Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to : obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. up_block_types (`Tuple[str]`, *optional*, defaults to : obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to : obj:`(64,)`): Tuple of block output channels. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space. sample_size (`int`, *optional*, defaults to `32`): TODO num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE. """ def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"), up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"), block_out_channels: Tuple[int] = (32, 64, 128, 256), layers_per_block: int = 1, act_fn: str = "silu", latent_channels: int = 3, sample_size: int = 32, num_vq_embeddings: int = 256, norm_num_groups: int = 32, ): super().__init__() # pass init params to Encoder self.encoder = Encoder( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_num_groups=norm_num_groups, double_z=False, ) self.quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) self.quantize = VectorQuantizer( num_vq_embeddings, latent_channels, beta=0.25, remap=None, sane_index_shape=False ) self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) # pass init params to Decoder self.decoder = Decoder( in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_num_groups=norm_num_groups, ) # def encode(self, x: torch.FloatTensor): # z = self.encoder(x) # z = self.quant_conv(z) # return z def encode(self, x, return_loss=True, force_quantize= True): z = self.encoder(x) z = self.quant_conv(z) if force_quantize: z_q, emb_loss, _ = self.quantize(z) else: z_q, emb_loss = z, None if return_loss: return z_q, emb_loss else: return z_q def decode(self, z_q) -> torch.FloatTensor: z_q = self.post_quant_conv(z_q) x = self.decoder(z_q) return x # def decode(self, z: torch.FloatTensor, return_loss=True, force_quantize: bool = True) -> torch.FloatTensor: # if force_quantize: # z_q, emb_loss, _ = self.quantize(z) # else: # z_q, emb_loss = z, None # z_q = self.post_quant_conv(z_q) # x = self.decoder(z_q) # if return_loss: # return x, emb_loss # else: # return x def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: r""" Args: sample (`torch.FloatTensor`): Input sample. """ # h = self.encode(sample) h, emb_loss = self.encode(sample) dec = self.decode(h) # dec, emb_loss = self.decode(h) return dec, emb_loss class AutoencoderKL(nn.Module): r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma and Max Welling. This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the model (such as downloading or saving, etc.) Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to : obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. up_block_types (`Tuple[str]`, *optional*, defaults to : obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to : obj:`(64,)`): Tuple of block output channels. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space. sample_size (`int`, *optional*, defaults to `32`): TODO """ def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D","DownEncoderBlock2D",), up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D",), block_out_channels: Tuple[int] = (32, 64, 128, 128), layers_per_block: int = 1, act_fn: str = "silu", latent_channels: int = 3, norm_num_groups: int = 32, sample_size: int = 32, ): super().__init__() # pass init params to Encoder self.encoder = Encoder( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_num_groups=norm_num_groups, double_z=True, ) # pass init params to Decoder self.decoder = Decoder( in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, norm_num_groups=norm_num_groups, act_fn=act_fn, ) self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) def encode(self, x: torch.FloatTensor): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z: torch.FloatTensor) -> torch.FloatTensor: z = self.post_quant_conv(z) dec = self.decoder(z) return dec def forward( self, sample: torch.FloatTensor, sample_posterior: bool = True, generator: Optional[torch.Generator] = None, ) -> torch.FloatTensor: r""" Args: sample (`torch.FloatTensor`): Input sample. sample_posterior (`bool`, *optional*, defaults to `False`): Whether to sample from the posterior. """ x = sample posterior = self.encode(x) if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() kl_loss = posterior.kl() dec = self.decode(z) return dec, kl_loss class VQVAEWrapper(BasicModel): def __init__( self, in_ch: int = 3, out_ch: int = 3, down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D",), up_block_types: Tuple[str] = ("UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D",), block_out_channels: Tuple[int] = (32, 64, 128, 256, ), layers_per_block: int = 1, act_fn: str = "silu", latent_channels: int = 3, sample_size: int = 32, num_vq_embeddings: int = 64, norm_num_groups: int = 32, optimizer=torch.optim.AdamW, optimizer_kwargs={}, lr_scheduler=None, lr_scheduler_kwargs={}, loss=torch.nn.MSELoss, loss_kwargs={} ): super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs, loss, loss_kwargs) self.model = VQModel(in_ch, out_ch, down_block_types, up_block_types, block_out_channels, layers_per_block, act_fn, latent_channels, sample_size, num_vq_embeddings, norm_num_groups) def forward(self, sample): return self.model(sample) def encode(self, x): z = self.model.encode(x, return_loss=False) return z def decode(self, z): x = self.model.decode(z) return x def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): # ------------------------- Get Source/Target --------------------------- x = batch['source'] target = x # ------------------------- Run Model --------------------------- pred, vq_loss = self(x) # ------------------------- Compute Loss --------------------------- loss = self.loss_fct(pred, target) loss += vq_loss # --------------------- Compute Metrics ------------------------------- results = {'loss':loss} with torch.no_grad(): results['L2'] = torch.nn.functional.mse_loss(pred, target) results['L1'] = torch.nn.functional.l1_loss(pred, target) # ----------------- Log Scalars ---------------------- for metric_name, metric_val in results.items(): self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True) # ----------------- Save Image ------------------------------ if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0: def norm(x): return (x-x.min())/(x.max()-x.min()) images = [x, pred] log_step = self.global_step // self.trainer.log_every_n_steps path_out = Path(self.logger.log_dir)/'images' path_out.mkdir(parents=True, exist_ok=True) images = torch.cat([norm(img) for img in images]) save_image(images, path_out/f'sample_{log_step}.png') return loss def hinge_d_loss(logits_real, logits_fake): loss_real = torch.mean(F.relu(1. - logits_real)) loss_fake = torch.mean(F.relu(1. + logits_fake)) d_loss = 0.5 * (loss_real + loss_fake) return d_loss def vanilla_d_loss(logits_real, logits_fake): d_loss = 0.5 * ( torch.mean(F.softplus(-logits_real)) + torch.mean(F.softplus(logits_fake))) return d_loss class VQGAN(BasicModel): def __init__( self, in_ch: int = 3, out_ch: int = 3, down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D",), up_block_types: Tuple[str] = ("UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D",), block_out_channels: Tuple[int] = (32, 64, 128, 256, ), layers_per_block: int = 1, act_fn: str = "silu", latent_channels: int = 3, sample_size: int = 32, num_vq_embeddings: int = 64, norm_num_groups: int = 32, start_gan_train_step = 50000, # NOTE step increase with each optimizer gan_loss_weight: float = 1.0, # alias discriminator perceptual_loss_weight: float = 1.0, embedding_loss_weight: float = 1.0, optimizer=torch.optim.AdamW, optimizer_kwargs={}, lr_scheduler=None, lr_scheduler_kwargs={}, loss=torch.nn.MSELoss, loss_kwargs={} ): super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs, loss, loss_kwargs) self.vqvae = VQModel(in_ch, out_ch, down_block_types, up_block_types, block_out_channels, layers_per_block, act_fn, latent_channels, sample_size, num_vq_embeddings, norm_num_groups) self.discriminator = NLayerDiscriminator(in_ch) # self.perceiver = ... # Currently not supported, would require another trained NN self.start_gan_train_step = start_gan_train_step self.perceptual_loss_weight = perceptual_loss_weight self.gan_loss_weight = gan_loss_weight self.embedding_loss_weight = embedding_loss_weight def forward(self, x, condition=None): return self.vqvae(x) def encode(self, x): z = self.vqvae.encode(x, return_loss=False) return z def decode(self, z): x = self.vqvae.decode(z) return x def compute_lambda(self, rec_loss, gan_loss, eps=1e-4): """Computes adaptive weight as proposed in eq. 7 of https://arxiv.org/abs/2012.09841""" last_layer = self.vqvae.decoder.conv_out.weight rec_grads = torch.autograd.grad(rec_loss, last_layer, retain_graph=True)[0] gan_grads = torch.autograd.grad(gan_loss, last_layer, retain_graph=True)[0] d_weight = torch.norm(rec_grads) / (torch.norm(gan_grads) + eps) d_weight = torch.clamp(d_weight, 0.0, 1e4) return d_weight.detach() def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): x = batch['source'] # condition = batch.get('target', None) pred, vq_emb_loss = self.vqvae(x) if optimizer_idx == 0: # ------ VAE ------- vq_img_loss = F.mse_loss(pred, x) vq_per_loss = 0.0 #self.perceiver(pred, x) rec_loss = vq_img_loss+self.perceptual_loss_weight*vq_per_loss # ------- GAN ----- if step > self.start_gan_train_step: gan_loss = -torch.mean(self.discriminator(pred)) lambda_weight = self.compute_lambda(rec_loss, gan_loss) gan_loss = gan_loss*lambda_weight else: gan_loss = torch.tensor([0.0], requires_grad=True, device=x.device) loss = self.gan_loss_weight*gan_loss+rec_loss+self.embedding_loss_weight*vq_emb_loss elif optimizer_idx == 1: if step > self.start_gan_train_step//2: logits_real = self.discriminator(x.detach()) logits_fake = self.discriminator(pred.detach()) loss = hinge_d_loss(logits_real, logits_fake) else: loss = torch.tensor([0.0], requires_grad=True, device=x.device) # --------------------- Compute Metrics ------------------------------- results = {'loss':loss.detach(), f'loss_{optimizer_idx}':loss.detach()} with torch.no_grad(): results[f'L2'] = torch.nn.functional.mse_loss(pred, x) results[f'L1'] = torch.nn.functional.l1_loss(pred, x) # ----------------- Log Scalars ---------------------- for metric_name, metric_val in results.items(): self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True) # ----------------- Save Image ------------------------------ if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0: # NOTE: step 1 (opt1) , step=2 (opt2), step=3 (opt1), ... def norm(x): return (x-x.min())/(x.max()-x.min()) images = torch.cat([x, pred]) log_step = self.global_step // self.trainer.log_every_n_steps path_out = Path(self.logger.log_dir)/'images' path_out.mkdir(parents=True, exist_ok=True) images = torch.stack([norm(img) for img in images]) save_image(images, path_out/f'sample_{log_step}.png') return loss def configure_optimizers(self): opt_vae = self.optimizer(self.vqvae.parameters(), **self.optimizer_kwargs) opt_disc = self.optimizer(self.discriminator.parameters(), **self.optimizer_kwargs) if self.lr_scheduler is not None: scheduler = [ { 'scheduler': self.lr_scheduler(opt_vae, **self.lr_scheduler_kwargs), 'interval': 'step', 'frequency': 1 }, { 'scheduler': self.lr_scheduler(opt_disc, **self.lr_scheduler_kwargs), 'interval': 'step', 'frequency': 1 }, ] else: scheduler = [] return [opt_vae, opt_disc], scheduler class VAEWrapper(BasicModel): def __init__( self, in_ch: int = 3, out_ch: int = 3, down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"), # "DownEncoderBlock2D", "DownEncoderBlock2D", up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D","UpDecoderBlock2D" ), # "UpDecoderBlock2D", "UpDecoderBlock2D", block_out_channels: Tuple[int] = (32, 64, 128, 256), # 128, 256 layers_per_block: int = 1, act_fn: str = "silu", latent_channels: int = 3, norm_num_groups: int = 32, sample_size: int = 32, optimizer=torch.optim.AdamW, optimizer_kwargs={'lr':1e-4, 'weight_decay':1e-3, 'amsgrad':True}, lr_scheduler=None, lr_scheduler_kwargs={}, # loss=torch.nn.MSELoss, # WARNING: No Effect # loss_kwargs={'reduction': 'mean'} ): super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs ) # loss, loss_kwargs self.model = AutoencoderKL(in_ch, out_ch, down_block_types, up_block_types, block_out_channels, layers_per_block, act_fn, latent_channels, norm_num_groups, sample_size) self.logvar = nn.Parameter(torch.zeros(size=())) # Better weighting between KL and MSE, see (https://arxiv.org/abs/1903.05789), also used by Taming-Transfomer/Stable Diffusion def forward(self, sample): return self.model(sample) def encode(self, x): z = self.model.encode(x) # Latent space but not yet mapped to discrete embedding vectors return z.sample(generator=None) def decode(self, z): x = self.model.decode(z) return x def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): # ------------------------- Get Source/Target --------------------------- x = batch['source'] target = x HALF_LOG_TWO_PI = 0.91893 # log(2pi)/2 # ------------------------- Run Model --------------------------- pred, kl_loss = self(x) # ------------------------- Compute Loss --------------------------- loss = torch.sum( torch.square(pred-target))/x.shape[0] #torch.sum( torch.square((pred-target)/torch.exp(self.logvar))/2 + self.logvar + HALF_LOG_TWO_PI )/x.shape[0] loss += kl_loss # --------------------- Compute Metrics ------------------------------- results = {'loss':loss.detach()} with torch.no_grad(): results['L2'] = torch.nn.functional.mse_loss(pred, target) results['L1'] = torch.nn.functional.l1_loss(pred, target) # ----------------- Log Scalars ---------------------- for metric_name, metric_val in results.items(): self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True) # ----------------- Save Image ------------------------------ if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0: def norm(x): return (x-x.min())/(x.max()-x.min()) images = torch.cat([x, pred]) log_step = self.global_step // self.trainer.log_every_n_steps path_out = Path(self.logger.log_dir)/'images' path_out.mkdir(parents=True, exist_ok=True) images = torch.stack([norm(img) for img in images]) save_image(images, path_out/f'sample_{log_step}.png') return loss