from medical_diffusion.models.noise_schedulers import GaussianNoiseScheduler from medical_diffusion.data.datasets import SimpleDataset2D from medical_diffusion.models.pipelines import DiffusionPipeline import torch from pathlib import Path from torchvision.utils import save_image ds = SimpleDataset2D( crawler_ext='jpg', image_resize=(352, 528), image_crop=(192, 288), path_root='/home/gustav/Documents/datasets/AIROGS/dataset', ) device = torch.device('cuda') pipeline = DiffusionPipeline.load_from_checkpoint('runs/2022_09_22_153738/last.ckpt') pipeline.to(device) scheduler = GaussianNoiseScheduler() scheduler.to(device) path_out = Path.cwd()/'results/test' torch.manual_seed(0) x_0 = ds[0]['source'][None] # [B, C, H, W] x_0 = x_0.to(device) x_0 = x_0*2-1 noise = torch.rand_like(x_0) x_ts = [] x_0_preds = [] for t in range(0, 1000, 100): time = torch.tensor([t], device=device) x_t = scheduler.estimate_x_t(x_0=x_0, t=time, noise=noise) # [B, C, H, W] x_0_pred = pipeline.denoise(x_t, i=t) x_t = x_t/2+0.5 x_0_pred = x_0_pred/2+0.5 x_ts.append(x_t) x_0_preds.append(x_0_pred) # print(x_t) x_ts = torch.cat(x_ts) save_image(x_ts, path_out/'test2.png') x_0_preds = torch.cat(x_0_preds) save_image(x_0_preds, path_out/'test3.png') # x_0 = scheduler.estimate_x_0(x_t, noise, t) # # print(x_0) # x_t_prior = scheduler.estimate_x_t_prior_from_noise(x_t, t, noise, noise=noise)