Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
from datasets import load_dataset
|
3 |
import json
|
4 |
-
from cadquery import
|
|
|
|
|
5 |
|
6 |
# Load CADBench dataset
|
7 |
dataset = load_dataset("FreedomIntelligence/CADBench", split="train")
|
@@ -11,13 +13,44 @@ st.title("Quick CAD Model Generator")
|
|
11 |
st.sidebar.title("Select Case")
|
12 |
case = st.sidebar.radio("Choose a functionality:", ["DFM Analysis", "Predefined Template Selection"])
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
if case == "DFM Analysis":
|
15 |
st.subheader("Case 1: DFM Analysis")
|
16 |
cad_file = st.file_uploader("Upload a CAD file (.stl, .step, .dwg)", type=["stl", "step", "dwg"])
|
17 |
if cad_file:
|
18 |
-
|
19 |
-
|
20 |
-
st.success(
|
|
|
21 |
elif case == "Predefined Template Selection":
|
22 |
st.subheader("Case 2: Predefined Template Selection")
|
23 |
template_names = dataset["name"]
|
@@ -26,8 +59,8 @@ elif case == "Predefined Template Selection":
|
|
26 |
if selected_template:
|
27 |
st.write(f"Selected Template: {selected_template}")
|
28 |
template_data = dataset.filter(lambda x: x["name"] == selected_template).to_pandas()
|
29 |
-
criteria =
|
30 |
-
|
31 |
responses = {}
|
32 |
for criterion, prompt in criteria.items():
|
33 |
prefilled_text = f"Enter {criterion} ({prompt}):"
|
@@ -37,8 +70,11 @@ elif case == "Predefined Template Selection":
|
|
37 |
|
38 |
if st.button("Generate CAD Model"):
|
39 |
try:
|
40 |
-
|
|
|
|
|
41 |
st.success("CAD Model Generated Successfully!")
|
42 |
-
|
|
|
43 |
except Exception as e:
|
44 |
st.error(f"Error generating CAD model: {e}")
|
|
|
1 |
import streamlit as st
|
2 |
from datasets import load_dataset
|
3 |
import json
|
4 |
+
from cadquery import Workplane, exporters
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
|
8 |
# Load CADBench dataset
|
9 |
dataset = load_dataset("FreedomIntelligence/CADBench", split="train")
|
|
|
13 |
st.sidebar.title("Select Case")
|
14 |
case = st.sidebar.radio("Choose a functionality:", ["DFM Analysis", "Predefined Template Selection"])
|
15 |
|
16 |
+
def analyze_dfm(file, file_format):
|
17 |
+
"""Perform Design for Manufacturing (DFM) analysis."""
|
18 |
+
try:
|
19 |
+
st.write(f"Analyzing {file_format} file...")
|
20 |
+
# Placeholder: Replace with real DFM logic
|
21 |
+
return "The design is suitable for CNC manufacturing!"
|
22 |
+
except Exception as e:
|
23 |
+
return f"Error analyzing file: {e}"
|
24 |
+
|
25 |
+
def generate_cad_model(responses):
|
26 |
+
"""Generate CAD model based on user inputs."""
|
27 |
+
try:
|
28 |
+
# Placeholder: CAD generation logic
|
29 |
+
result = Workplane("XY").box(1, 1, 1) # Example model
|
30 |
+
return result
|
31 |
+
except Exception as e:
|
32 |
+
raise RuntimeError(f"Error generating CAD model: {e}")
|
33 |
+
|
34 |
+
def export_cad(model, file_format):
|
35 |
+
"""Export CAD model to selected format."""
|
36 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_format}") as temp_file:
|
37 |
+
if file_format == "stl":
|
38 |
+
exporters.exportShape(model, exporters.ExportTypes.STL, temp_file.name)
|
39 |
+
elif file_format == "step":
|
40 |
+
exporters.exportShape(model, exporters.ExportTypes.STEP, temp_file.name)
|
41 |
+
elif file_format == "dwg":
|
42 |
+
# Placeholder: Add DWG export logic
|
43 |
+
pass
|
44 |
+
return temp_file.name
|
45 |
+
|
46 |
if case == "DFM Analysis":
|
47 |
st.subheader("Case 1: DFM Analysis")
|
48 |
cad_file = st.file_uploader("Upload a CAD file (.stl, .step, .dwg)", type=["stl", "step", "dwg"])
|
49 |
if cad_file:
|
50 |
+
file_format = os.path.splitext(cad_file.name)[1][1:]
|
51 |
+
analysis_result = analyze_dfm(cad_file, file_format)
|
52 |
+
st.success(analysis_result)
|
53 |
+
|
54 |
elif case == "Predefined Template Selection":
|
55 |
st.subheader("Case 2: Predefined Template Selection")
|
56 |
template_names = dataset["name"]
|
|
|
59 |
if selected_template:
|
60 |
st.write(f"Selected Template: {selected_template}")
|
61 |
template_data = dataset.filter(lambda x: x["name"] == selected_template).to_pandas()
|
62 |
+
criteria = template_data.iloc[0]["criteria"] # Already a dict
|
63 |
+
|
64 |
responses = {}
|
65 |
for criterion, prompt in criteria.items():
|
66 |
prefilled_text = f"Enter {criterion} ({prompt}):"
|
|
|
70 |
|
71 |
if st.button("Generate CAD Model"):
|
72 |
try:
|
73 |
+
model = generate_cad_model(responses)
|
74 |
+
file_format = st.selectbox("Select file format for download", ["stl", "step", "dwg"])
|
75 |
+
file_path = export_cad(model, file_format)
|
76 |
st.success("CAD Model Generated Successfully!")
|
77 |
+
with open(file_path, "rb") as f:
|
78 |
+
st.download_button("Download CAD File", data=f.read(), file_name=f"model.{file_format}")
|
79 |
except Exception as e:
|
80 |
st.error(f"Error generating CAD model: {e}")
|