muhammadahmedrayyan commited on
Commit
c9a5b96
1 Parent(s): e035f8f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -14
app.py CHANGED
@@ -13,9 +13,9 @@ st.set_page_config(
13
 
14
  # Load Hugging Face models and tokenizer for text generation
15
  @st.cache_resource
16
- def load_model(model_name):
17
- tokenizer = AutoTokenizer.from_pretrained(model_name)
18
- model = AutoModelForCausalLM.from_pretrained(model_name)
19
  return tokenizer, model
20
 
21
  # Load Hugging Face models and tokenizer for document question answering
@@ -27,8 +27,8 @@ def load_document_model():
27
 
28
  # Function to create a text generation pipeline
29
  @st.cache_resource
30
- def create_pipeline(model_name):
31
- tokenizer, model = load_model(model_name)
32
  return pipeline("text-generation", model=model, tokenizer=tokenizer)
33
 
34
  # Function to create a document question answering pipeline
@@ -48,6 +48,10 @@ def read_pdf(file):
48
  except Exception as e:
49
  return f"Error reading PDF: {e}"
50
 
 
 
 
 
51
  # Custom CSS for styling
52
  st.markdown(
53
  """
@@ -145,9 +149,6 @@ with col2:
145
  with st.spinner("Generating response..."):
146
  try:
147
  if model_selection == "Disease Analysis":
148
- # Adjusted model name to match working configurations
149
- pipe = create_pipeline("harishussain12/Disease_Managment")
150
-
151
  context = ""
152
  if uploaded_file is not None:
153
  file_content = read_pdf(uploaded_file)
@@ -157,14 +158,10 @@ with col2:
157
  context = file_content
158
 
159
  query_input = search_input + (f"\n\nContext:\n{context}" if context else "")
160
- st.write(f"Debug: Query Input - {query_input}") # Debug log for troubleshooting
161
-
162
- response = pipe(query_input, max_length=200, num_return_sequences=1)
163
  st.markdown(f"### Response:\n{response[0]['generated_text']}")
164
 
165
  elif model_selection == "Document Analysis":
166
- pipe = create_document_pipeline()
167
-
168
  context = ""
169
  if uploaded_file is not None:
170
  file_content = read_pdf(uploaded_file)
@@ -174,7 +171,7 @@ with col2:
174
  context = file_content
175
 
176
  if search_input and context:
177
- result = pipe({"question": search_input, "context": context})
178
  st.markdown(f"### Answer:\n{result['answer']}")
179
 
180
  except Exception as e:
 
13
 
14
  # Load Hugging Face models and tokenizer for text generation
15
  @st.cache_resource
16
+ def load_model():
17
+ tokenizer = AutoTokenizer.from_pretrained("harishussain12/Disease_Managment")
18
+ model = AutoModelForCausalLM.from_pretrained("harishussain12/Disease_Managment")
19
  return tokenizer, model
20
 
21
  # Load Hugging Face models and tokenizer for document question answering
 
27
 
28
  # Function to create a text generation pipeline
29
  @st.cache_resource
30
+ def create_pipeline():
31
+ tokenizer, model = load_model()
32
  return pipeline("text-generation", model=model, tokenizer=tokenizer)
33
 
34
  # Function to create a document question answering pipeline
 
48
  except Exception as e:
49
  return f"Error reading PDF: {e}"
50
 
51
+ # Load pipelines
52
+ text_pipeline = create_pipeline()
53
+ document_pipeline = create_document_pipeline()
54
+
55
  # Custom CSS for styling
56
  st.markdown(
57
  """
 
149
  with st.spinner("Generating response..."):
150
  try:
151
  if model_selection == "Disease Analysis":
 
 
 
152
  context = ""
153
  if uploaded_file is not None:
154
  file_content = read_pdf(uploaded_file)
 
158
  context = file_content
159
 
160
  query_input = search_input + (f"\n\nContext:\n{context}" if context else "")
161
+ response = text_pipeline(query_input, max_length=200, num_return_sequences=1)
 
 
162
  st.markdown(f"### Response:\n{response[0]['generated_text']}")
163
 
164
  elif model_selection == "Document Analysis":
 
 
165
  context = ""
166
  if uploaded_file is not None:
167
  file_content = read_pdf(uploaded_file)
 
171
  context = file_content
172
 
173
  if search_input and context:
174
+ result = document_pipeline({"question": search_input, "context": context})
175
  st.markdown(f"### Answer:\n{result['answer']}")
176
 
177
  except Exception as e: