File size: 1,122 Bytes
5bcc945
 
ebcf78e
5bcc945
 
 
9981df6
 
9aabe06
7a73074
9981df6
9aabe06
d0dc5fc
0feee31
c2483bf
9981df6
 
 
eb89bef
 
3d201bf
cbf8f16
eb89bef
cbf8f16
9aabe06
 
 
9981df6
 
 
 
36a2e00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import sys
import subprocess
from torch.utils.checkpoint import checkpoint
# implement pip as a subprocess:
subprocess.check_call([sys.executable, '-m', 'pip', 'install','--quiet','sentencepiece==0.1.95'])

import gradio as gr
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
model = torch.load("helsinki_fineTuned.pt", map_location=torch.device('cpu'))
model.eval()
#translation_pipeline = pipeline(model)


def translate_gradio(input):

    with tokenizer.as_target_tokenizer():
        input_ids = tokenizer(input, return_tensors='pt')
    encode = model.generate(**input_ids)
#    encode = model.generate(**tokenizer.prepare_seq2seq_batch(input,return_tensors='pt'))
    text_ar = tokenizer.batch_decode(encode,skip_special_tokens=True)[0]
    return text_ar



translate_interface = gr.Interface(fn = translate_gradio,
                                   inputs="text",
                                   outputs="text"                      )
translate_interface.launch(inline = False)