gradio-demo / app.py
muhammadayman's picture
Update app.py
eded150
raw
history blame
1.12 kB
import sys
import subprocess
from torch.utils.checkpoint import checkpoint
# implement pip as a subprocess:
subprocess.check_call([sys.executable, '-m', 'pip', 'install','--quiet','sentencepiece==0.1.95'])
import gradio as gr
#from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
model = torch.load("helsinki_fineTuned.pt", map_location=torch.device('cpu'))
model.eval()
#translation_pipeline = pipeline(model)
def translate_gradio(input):
with tokenizer.as_target_tokenizer():
input_ids = tokenizer(input, return_tensors='pt')
encode = model.generate(**input_ids)
# encode = model.generate(**tokenizer.prepare_seq2seq_batch(input,return_tensors='pt'))
text_ar = tokenizer.batch_decode(encode,skip_special_tokens=True)[0]
return text_ar
translate_interface = gr.Interface(fn = translate_gradio,
inputs="text",
outputs="text" )
translate_interface.launch(inline = False)