Spaces:
Sleeping
Sleeping
import sys | |
#import subprocess | |
#from torch.utils.checkpoint import checkpoint | |
# implement pip as a subprocess: | |
#subprocess.check_call([sys.executable, '-m', 'pip', 'install','--quiet','sentencepiece==0.1.95']) | |
import gradio as gr | |
#from transformers import pipeline | |
from transformers import AutoTokenizer | |
import torch | |
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
model = torch.load("helsinki_fineTuned.pt", map_location=torch.device('cpu')) | |
model.eval() | |
#translation_pipeline = pipeline(model) | |
def translate_gradio(input): | |
''' | |
with tokenizer.as_target_tokenizer(): | |
input_ids = tokenizer(input, return_tensors='pt') | |
encode = model.generate(**input_ids) | |
# encode = model.generate(**tokenizer.prepare_seq2seq_batch(input,return_tensors='pt')) | |
text_ar = tokenizer.batch_decode(encode,skip_special_tokens=True)[0]''' | |
tokenized_text = tokenizer.prepare_seq2seq_batch([input], return_tensors='pt') | |
# Perform translation and decode the output | |
encode = model.generate(**tokenized_text) | |
text_ar = tokenizer.batch_decode(encode,skip_special_tokens=True)[0] | |
return text_ar | |
#description = 'Translating "English Data Science" content into Arabic' | |
translate_interface = gr.Interface(fn = translate_gradio, | |
title = 'Translating "English Data Science" content into Arabic', | |
inputs=gr.inputs.Textbox(lines = 7, label = 'english content'), | |
outputs="Translated Output" | |
) | |
translate_interface.launch(inline = False) |