Update app.py
Browse files
app.py
CHANGED
@@ -24,18 +24,8 @@ client = None
|
|
24 |
def load_llm():
|
25 |
# Ensure you have the API Key set in your environment or via input
|
26 |
api_key = os.getenv("CEREBRAS_API_KEY")
|
27 |
-
|
28 |
-
|
29 |
-
if api_key:
|
30 |
-
llm = Cerebras(model="llama-3.3-70b", api_key=api_key)
|
31 |
-
return llm
|
32 |
-
else:
|
33 |
-
st.error("API Key is required.")
|
34 |
-
return None
|
35 |
-
|
36 |
-
# Load llm at the beginning of the session
|
37 |
-
if "llm" not in st.session_state:
|
38 |
-
st.session_state.llm = load_llm()
|
39 |
|
40 |
def reset_chat():
|
41 |
st.session_state.messages = []
|
@@ -46,8 +36,6 @@ def display_excel(file):
|
|
46 |
st.markdown("### Excel Preview")
|
47 |
# Read the Excel file
|
48 |
df = pd.read_excel(file)
|
49 |
-
# Attempt to fix mixed-type column errors
|
50 |
-
#df = df.apply(pd.to_numeric, errors='coerce') # Convert columns to numeric where possible
|
51 |
# Display the dataframe
|
52 |
st.dataframe(df)
|
53 |
|
@@ -149,23 +137,18 @@ if prompt := st.chat_input("What's up?"):
|
|
149 |
with st.chat_message("assistant"):
|
150 |
message_placeholder = st.empty()
|
151 |
full_response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
#
|
154 |
-
if st.session_state.llm:
|
155 |
-
# Using Cerebras stream_chat for streaming response
|
156 |
-
messages = [
|
157 |
-
ChatMessage(role="user", content=prompt)
|
158 |
-
]
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
full_response += r.delta
|
163 |
-
message_placeholder.markdown(full_response + "▌")
|
164 |
-
|
165 |
-
message_placeholder.markdown(full_response)
|
166 |
-
|
167 |
-
else:
|
168 |
-
st.error("LLM model is not initialized correctly.")
|
169 |
|
170 |
# Add assistant response to chat history
|
171 |
-
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
|
|
24 |
def load_llm():
|
25 |
# Ensure you have the API Key set in your environment or via input
|
26 |
api_key = os.getenv("CEREBRAS_API_KEY")
|
27 |
+
llm = Cerebras(model="llama-3.3-70b", api_key=api_key)
|
28 |
+
return llm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def reset_chat():
|
31 |
st.session_state.messages = []
|
|
|
36 |
st.markdown("### Excel Preview")
|
37 |
# Read the Excel file
|
38 |
df = pd.read_excel(file)
|
|
|
|
|
39 |
# Display the dataframe
|
40 |
st.dataframe(df)
|
41 |
|
|
|
137 |
with st.chat_message("assistant"):
|
138 |
message_placeholder = st.empty()
|
139 |
full_response = ""
|
140 |
+
|
141 |
+
# Simulate stream of response with milliseconds delay
|
142 |
+
streaming_response = query_engine.query(prompt)
|
143 |
+
|
144 |
+
for chunk in streaming_response.response_gen:
|
145 |
+
full_response += chunk
|
146 |
+
message_placeholder.markdown(full_response + "▌")
|
147 |
|
148 |
+
# full_response = query_engine.query(prompt)
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
message_placeholder.markdown(full_response)
|
151 |
+
# st.session_state.context = ctx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
# Add assistant response to chat history
|
154 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|