muhammadsalmanalfaridzi commited on
Commit
a832b73
·
verified ·
1 Parent(s): 83e6aa1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -7,7 +7,7 @@ import streamlit as st
7
  from llama_index.core import Settings
8
  from llama_index.llms.cerebras import Cerebras
9
  from llama_index.core import PromptTemplate
10
- from llama_index.embeddings.huggingface import HuggingFaceEmbedding
11
  from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
12
  from llama_index.readers.docling import DoclingReader
13
  from llama_index.core.node_parser import MarkdownNodeParser
@@ -68,9 +68,12 @@ with st.sidebar:
68
 
69
  docs = loader.load_data()
70
 
71
- # setup llm & embedding model
72
  llm = load_llm()
73
- embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5", trust_remote_code=True)
 
 
 
74
  # Creating an index over loaded data
75
  Settings.embed_model = embed_model
76
  node_parser = MarkdownNodeParser()
@@ -111,7 +114,7 @@ with st.sidebar:
111
  col1, col2 = st.columns([6, 1])
112
 
113
  with col1:
114
- st.header(f"RAG over Excel using Dockling 🐥 & Llama-3.3 70B")
115
 
116
  with col2:
117
  st.button("Clear ↺", on_click=reset_chat)
@@ -145,10 +148,7 @@ if prompt := st.chat_input("What's up?"):
145
  full_response += chunk
146
  message_placeholder.markdown(full_response + "▌")
147
 
148
- # full_response = query_engine.query(prompt)
149
-
150
  message_placeholder.markdown(full_response)
151
- # st.session_state.context = ctx
152
 
153
  # Add assistant response to chat history
154
- st.session_state.messages.append({"role": "assistant", "content": full_response})
 
7
  from llama_index.core import Settings
8
  from llama_index.llms.cerebras import Cerebras
9
  from llama_index.core import PromptTemplate
10
+ from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding, EncodingFormat
11
  from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
12
  from llama_index.readers.docling import DoclingReader
13
  from llama_index.core.node_parser import MarkdownNodeParser
 
68
 
69
  docs = loader.load_data()
70
 
71
+ # Setup llm & embedding model
72
  llm = load_llm()
73
+ # Use Mixedbread AI Embedding instead of HuggingFaceEmbedding
74
+ mixedbread_api_key = os.getenv("MXBAI_API_KEY")
75
+ embed_model = MixedbreadAIEmbedding(api_key=mixedbread_api_key, model_name="mixedbread-ai/mxbai-embed-large-v1")
76
+
77
  # Creating an index over loaded data
78
  Settings.embed_model = embed_model
79
  node_parser = MarkdownNodeParser()
 
114
  col1, col2 = st.columns([6, 1])
115
 
116
  with col1:
117
+ st.header(f"RAG over Excel using Dockling 🐥 & Llama-3.3 70B")
118
 
119
  with col2:
120
  st.button("Clear ↺", on_click=reset_chat)
 
148
  full_response += chunk
149
  message_placeholder.markdown(full_response + "▌")
150
 
 
 
151
  message_placeholder.markdown(full_response)
 
152
 
153
  # Add assistant response to chat history
154
+ st.session_state.messages.append({"role": "assistant", "content": full_response})