Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ if "id" not in st.session_state:
|
|
20 |
session_id = st.session_state.id
|
21 |
client = None
|
22 |
|
23 |
-
# Initialize Cerebras LLM
|
24 |
def load_llm():
|
25 |
# Ensure you have the API Key set in your environment or via input
|
26 |
api_key = os.getenv("CEREBRAS_API_KEY")
|
@@ -33,10 +33,6 @@ def load_llm():
|
|
33 |
st.error("API Key is required.")
|
34 |
return None
|
35 |
|
36 |
-
# Load llm at the beginning of the session
|
37 |
-
if "llm" not in st.session_state:
|
38 |
-
st.session_state.llm = load_llm()
|
39 |
-
|
40 |
def reset_chat():
|
41 |
st.session_state.messages = []
|
42 |
st.session_state.context = None
|
@@ -68,6 +64,7 @@ with st.sidebar:
|
|
68 |
st.write("Indexing your document...")
|
69 |
|
70 |
if file_key not in st.session_state.get('file_cache', {}):
|
|
|
71 |
if os.path.exists(temp_dir):
|
72 |
reader = DoclingReader()
|
73 |
loader = SimpleDirectoryReader(
|
@@ -81,7 +78,7 @@ with st.sidebar:
|
|
81 |
docs = loader.load_data()
|
82 |
|
83 |
# setup llm & embedding model
|
84 |
-
llm =
|
85 |
if not llm:
|
86 |
st.stop() # Stop execution if model initialization failed
|
87 |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5", trust_remote_code=True)
|
@@ -114,7 +111,7 @@ with st.sidebar:
|
|
114 |
else:
|
115 |
query_engine = st.session_state.file_cache[file_key]
|
116 |
|
117 |
-
# Inform the user that the file is processed and Display the
|
118 |
st.success("Ready to Chat!")
|
119 |
display_excel(uploaded_file)
|
120 |
|
@@ -125,7 +122,7 @@ with st.sidebar:
|
|
125 |
col1, col2 = st.columns([6, 1])
|
126 |
|
127 |
with col1:
|
128 |
-
st.header(f"RAG over Excel using
|
129 |
|
130 |
with col2:
|
131 |
st.button("Clear ↺", on_click=reset_chat)
|
@@ -153,13 +150,16 @@ if prompt := st.chat_input("What's up?"):
|
|
153 |
full_response = ""
|
154 |
|
155 |
# Ensure llm is loaded
|
156 |
-
if st.session_state.
|
|
|
|
|
157 |
# Using Cerebras stream_chat for streaming response
|
158 |
messages = [
|
159 |
ChatMessage(role="user", content=prompt)
|
160 |
]
|
161 |
|
162 |
-
response =
|
|
|
163 |
for r in response:
|
164 |
full_response += r.delta
|
165 |
message_placeholder.markdown(full_response + "▌")
|
@@ -170,4 +170,4 @@ if prompt := st.chat_input("What's up?"):
|
|
170 |
st.error("LLM model is not initialized correctly.")
|
171 |
|
172 |
# Add assistant response to chat history
|
173 |
-
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
|
|
20 |
session_id = st.session_state.id
|
21 |
client = None
|
22 |
|
23 |
+
# Initialize Cerebras LLM
|
24 |
def load_llm():
|
25 |
# Ensure you have the API Key set in your environment or via input
|
26 |
api_key = os.getenv("CEREBRAS_API_KEY")
|
|
|
33 |
st.error("API Key is required.")
|
34 |
return None
|
35 |
|
|
|
|
|
|
|
|
|
36 |
def reset_chat():
|
37 |
st.session_state.messages = []
|
38 |
st.session_state.context = None
|
|
|
64 |
st.write("Indexing your document...")
|
65 |
|
66 |
if file_key not in st.session_state.get('file_cache', {}):
|
67 |
+
|
68 |
if os.path.exists(temp_dir):
|
69 |
reader = DoclingReader()
|
70 |
loader = SimpleDirectoryReader(
|
|
|
78 |
docs = loader.load_data()
|
79 |
|
80 |
# setup llm & embedding model
|
81 |
+
llm = load_llm() # Load the Cerebras model
|
82 |
if not llm:
|
83 |
st.stop() # Stop execution if model initialization failed
|
84 |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5", trust_remote_code=True)
|
|
|
111 |
else:
|
112 |
query_engine = st.session_state.file_cache[file_key]
|
113 |
|
114 |
+
# Inform the user that the file is processed and Display the PDF uploaded
|
115 |
st.success("Ready to Chat!")
|
116 |
display_excel(uploaded_file)
|
117 |
|
|
|
122 |
col1, col2 = st.columns([6, 1])
|
123 |
|
124 |
with col1:
|
125 |
+
st.header(f"RAG over Excel using Dockling 🐥 & Llama-3.3 70B")
|
126 |
|
127 |
with col2:
|
128 |
st.button("Clear ↺", on_click=reset_chat)
|
|
|
150 |
full_response = ""
|
151 |
|
152 |
# Ensure llm is loaded
|
153 |
+
if 'file_cache' in st.session_state and len(st.session_state.file_cache) > 0:
|
154 |
+
query_engine = list(st.session_state.file_cache.values())[0] # Get the first query engine
|
155 |
+
|
156 |
# Using Cerebras stream_chat for streaming response
|
157 |
messages = [
|
158 |
ChatMessage(role="user", content=prompt)
|
159 |
]
|
160 |
|
161 |
+
response = query_engine.query(prompt)
|
162 |
+
st.write(response) # Display raw query response for debugging
|
163 |
for r in response:
|
164 |
full_response += r.delta
|
165 |
message_placeholder.markdown(full_response + "▌")
|
|
|
170 |
st.error("LLM model is not initialized correctly.")
|
171 |
|
172 |
# Add assistant response to chat history
|
173 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|