Spaces:
Sleeping
Sleeping
import os | |
import gc | |
import tempfile | |
import uuid | |
import pandas as pd | |
from gitingest import ingest | |
from llama_index.core import Settings | |
from llama_index.llms.sambanovasystems import SambaNovaCloud | |
from llama_index.core import PromptTemplate | |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding | |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader | |
from llama_index.core.node_parser import MarkdownNodeParser | |
import streamlit as st | |
# Fetch API keys securely from Hugging Face secrets | |
SAMBANOVA_API_KEY = os.getenv("SAMBANOVA_API_KEY") | |
MXBAI_API_KEY = os.getenv("MXBAI_API_KEY") | |
# Ensure both API keys are available | |
if not SAMBANOVA_API_KEY: | |
raise ValueError("SAMBANOVA_API_KEY is not set in the Hugging Face secrets.") | |
if not MXBAI_API_KEY: | |
raise ValueError("MXBAI_API_KEY is not set in the Hugging Face secrets.") | |
if "id" not in st.session_state: | |
st.session_state.id = uuid.uuid4() | |
st.session_state.file_cache = {} | |
session_id = st.session_state.id | |
client = None | |
def load_llm(): | |
# Instantiate the SambaNova model | |
llm = SambaNovaCloud( | |
model="DeepSeek-R1-Distill-Llama-70B", | |
context_window=100000, | |
max_tokens=1024, | |
temperature=0.7, | |
top_k=1, | |
top_p=0.01, | |
) | |
return llm | |
def reset_chat(): | |
st.session_state.messages = [] | |
st.session_state.context = None | |
gc.collect() | |
def process_with_gitingets(github_url): | |
# or from URL | |
summary, tree, content = ingest(github_url) | |
return summary, tree, content | |
with st.sidebar: | |
st.header(f"Add your GitHub repository!") | |
github_url = st.text_input("Enter GitHub repository URL", placeholder="GitHub URL") | |
load_repo = st.button("Load Repository") | |
if github_url and load_repo: | |
try: | |
with tempfile.TemporaryDirectory() as temp_dir: | |
st.write("Processing your repository...") | |
repo_name = github_url.split('/')[-1] | |
file_key = f"{session_id}-{repo_name}" | |
if file_key not in st.session_state.get('file_cache', {}): | |
if os.path.exists(temp_dir): | |
summary, tree, content = process_with_gitingets(github_url) | |
# Write summary to a markdown file | |
with open("content.md", "w", encoding="utf-8") as f: | |
f.write(content) | |
# Write summary to a markdown file in temp directory | |
content_path = os.path.join(temp_dir, f"{repo_name}_content.md") | |
with open(content_path, "w", encoding="utf-8") as f: | |
f.write(content) | |
loader = SimpleDirectoryReader( | |
input_dir=temp_dir, | |
) | |
else: | |
st.error('Could not find the file you uploaded, please check again...') | |
st.stop() | |
docs = loader.load_data() | |
# setup llm & embedding model | |
llm=load_llm() | |
# Mixedbread AI embedding setup | |
embed_model = MixedbreadAIEmbedding( | |
api_key=MXBAI_API_KEY, # Use the API key from Hugging Face secret | |
model_name="mixedbread-ai/mxbai-embed-large-v1", # Specify the model name | |
) | |
# Creating an index over loaded data | |
Settings.embed_model = embed_model | |
node_parser = MarkdownNodeParser() | |
index = VectorStoreIndex.from_documents(documents=docs, transformations=[node_parser], show_progress=True) | |
# Create the query engine | |
Settings.llm = llm | |
query_engine = index.as_query_engine(streaming=True) | |
# ====== Customise prompt template ====== | |
qa_prompt_tmpl_str = """ | |
You are an AI assistant specialized in analyzing GitHub repositories. | |
Repository structure: | |
{tree} | |
--------------------- | |
Context information from the repository: | |
{context_str} | |
--------------------- | |
Given the repository structure and context above, provide a clear and precise answer to the query. | |
Focus on the repository's content, code structure, and implementation details. | |
If the information is not available in the context, respond with 'I don't have enough information about that aspect of the repository.' | |
Query: {query_str} | |
Answer: """ | |
qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str) | |
query_engine.update_prompts( | |
{"response_synthesizer:text_qa_template": qa_prompt_tmpl} | |
) | |
st.session_state.file_cache[file_key] = query_engine | |
else: | |
query_engine = st.session_state.file_cache[file_key] | |
# Inform the user that the file is processed and display the PDF uploaded | |
st.success("Ready to Chat!") | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
st.stop() | |
col1, col2 = st.columns([6, 1]) | |
with col1: | |
st.header(f"Chat with GitHub using RAG </>") | |
with col2: | |
st.button("Clear ↺", on_click=reset_chat) | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
reset_chat() | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input("What's up?"): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
try: | |
# Get the repo name from the GitHub URL | |
repo_name = github_url.split('/')[-1] | |
file_key = f"{session_id}-{repo_name}" | |
# Get query engine from session state | |
query_engine = st.session_state.file_cache.get(file_key) | |
if query_engine is None: | |
st.error("Please load a repository first!") | |
st.stop() | |
# Use the query engine | |
response = query_engine.query(prompt) | |
# Handle streaming response | |
if hasattr(response, 'response_gen'): | |
for chunk in response.response_gen: | |
if isinstance(chunk, str): | |
full_response += chunk | |
message_placeholder.markdown(full_response + "▌") | |
else: | |
# Handle non-streaming response | |
full_response = str(response) | |
message_placeholder.markdown(full_response) | |
message_placeholder.markdown(full_response) | |
except Exception as e: | |
st.error(f"An error occurred while processing your query: {str(e)}") | |
full_response = "Sorry, I encountered an error while processing your request." | |
message_placeholder.markdown(full_response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) |