Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gc
|
3 |
+
import tempfile
|
4 |
+
import uuid
|
5 |
+
import pandas as pd
|
6 |
+
import openai # Import openai for Sambanova API
|
7 |
+
|
8 |
+
from gitingest import ingest
|
9 |
+
from llama_index.core import Settings
|
10 |
+
from llama_index.core import PromptTemplate
|
11 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
12 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
13 |
+
from llama_index.core.node_parser import MarkdownNodeParser
|
14 |
+
|
15 |
+
import streamlit as st
|
16 |
+
|
17 |
+
if "id" not in st.session_state:
|
18 |
+
st.session_state.id = uuid.uuid4()
|
19 |
+
st.session_state.file_cache = {}
|
20 |
+
|
21 |
+
session_id = st.session_state.id
|
22 |
+
client = None
|
23 |
+
|
24 |
+
# Update the load_llm function to use Sambanova's API
|
25 |
+
@st.cache_resource
|
26 |
+
def load_llm():
|
27 |
+
# Initialize the Sambanova OpenAI client
|
28 |
+
client = openai.OpenAI(
|
29 |
+
api_key=os.environ.get("SAMBANOVA_API_KEY"),
|
30 |
+
base_url="https://api.sambanova.ai/v1",
|
31 |
+
)
|
32 |
+
return client
|
33 |
+
|
34 |
+
def reset_chat():
|
35 |
+
st.session_state.messages = []
|
36 |
+
st.session_state.context = None
|
37 |
+
gc.collect()
|
38 |
+
|
39 |
+
def process_with_gitingets(github_url):
|
40 |
+
# or from URL
|
41 |
+
summary, tree, content = ingest(github_url)
|
42 |
+
return summary, tree, content
|
43 |
+
|
44 |
+
|
45 |
+
with st.sidebar:
|
46 |
+
st.header(f"Add your GitHub repository!")
|
47 |
+
|
48 |
+
github_url = st.text_input("Enter GitHub repository URL", placeholder="GitHub URL")
|
49 |
+
load_repo = st.button("Load Repository")
|
50 |
+
|
51 |
+
if github_url and load_repo:
|
52 |
+
try:
|
53 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
54 |
+
st.write("Processing your repository...")
|
55 |
+
repo_name = github_url.split('/')[-1]
|
56 |
+
file_key = f"{session_id}-{repo_name}"
|
57 |
+
|
58 |
+
if file_key not in st.session_state.get('file_cache', {}):
|
59 |
+
if os.path.exists(temp_dir):
|
60 |
+
summary, tree, content = process_with_gitingets(github_url)
|
61 |
+
|
62 |
+
# Write summary to a markdown file
|
63 |
+
with open("content.md", "w", encoding="utf-8") as f:
|
64 |
+
f.write(content)
|
65 |
+
|
66 |
+
# Write summary to a markdown file in temp directory
|
67 |
+
content_path = os.path.join(temp_dir, f"{repo_name}_content.md")
|
68 |
+
with open(content_path, "w", encoding="utf-8") as f:
|
69 |
+
f.write(content)
|
70 |
+
loader = SimpleDirectoryReader(
|
71 |
+
input_dir=temp_dir,
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
st.error('Could not find the file you uploaded, please check again...')
|
75 |
+
st.stop()
|
76 |
+
|
77 |
+
docs = loader.load_data()
|
78 |
+
|
79 |
+
# setup llm & embedding model
|
80 |
+
llm = load_llm() # Load the Sambanova LLM client
|
81 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5", trust_remote_code=True)
|
82 |
+
# Creating an index over loaded data
|
83 |
+
Settings.embed_model = embed_model
|
84 |
+
node_parser = MarkdownNodeParser()
|
85 |
+
index = VectorStoreIndex.from_documents(documents=docs, transformations=[node_parser], show_progress=True)
|
86 |
+
|
87 |
+
# Create the query engine, where we use a cohere reranker on the fetched nodes
|
88 |
+
Settings.llm = llm
|
89 |
+
query_engine = index.as_query_engine(streaming=True)
|
90 |
+
|
91 |
+
# ====== Customise prompt template ======
|
92 |
+
qa_prompt_tmpl_str = (
|
93 |
+
"Context information is below.\n"
|
94 |
+
"---------------------\n"
|
95 |
+
"{context_str}\n"
|
96 |
+
"---------------------\n"
|
97 |
+
"Given the context information above I want you to think step by step to answer the query in a highly precise and crisp manner focused on the final answer, incase case you don't know the answer say 'I don't know!'.\n"
|
98 |
+
"Query: {query_str}\n"
|
99 |
+
"Answer: "
|
100 |
+
)
|
101 |
+
qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str)
|
102 |
+
|
103 |
+
query_engine.update_prompts(
|
104 |
+
{"response_synthesizer:text_qa_template": qa_prompt_tmpl}
|
105 |
+
)
|
106 |
+
|
107 |
+
st.session_state.file_cache[file_key] = query_engine
|
108 |
+
else:
|
109 |
+
query_engine = st.session_state.file_cache[file_key]
|
110 |
+
|
111 |
+
# Inform the user that the file is processed and Display the PDF uploaded
|
112 |
+
st.success("Ready to Chat!")
|
113 |
+
except Exception as e:
|
114 |
+
st.error(f"An error occurred: {e}")
|
115 |
+
st.stop()
|
116 |
+
|
117 |
+
col1, col2 = st.columns([6, 1])
|
118 |
+
|
119 |
+
with col1:
|
120 |
+
st.header(f"Chat with GitHub using RAG </>")
|
121 |
+
|
122 |
+
with col2:
|
123 |
+
st.button("Clear ↺", on_click=reset_chat)
|
124 |
+
|
125 |
+
# Initialize chat history
|
126 |
+
if "messages" not in st.session_state:
|
127 |
+
reset_chat()
|
128 |
+
|
129 |
+
# Display chat messages from history on app rerun
|
130 |
+
for message in st.session_state.messages:
|
131 |
+
with st.chat_message(message["role"]):
|
132 |
+
st.markdown(message["content"])
|
133 |
+
|
134 |
+
# Accept user input
|
135 |
+
if prompt := st.chat_input("What's up?"):
|
136 |
+
# Add user message to chat history
|
137 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
138 |
+
# Display user message in chat message container
|
139 |
+
with st.chat_message("user"):
|
140 |
+
st.markdown(prompt)
|
141 |
+
|
142 |
+
# Display assistant response in chat message container
|
143 |
+
with st.chat_message("assistant"):
|
144 |
+
message_placeholder = st.empty()
|
145 |
+
full_response = ""
|
146 |
+
|
147 |
+
try:
|
148 |
+
# Get the repo name from the GitHub URL
|
149 |
+
repo_name = github_url.split('/')[-1]
|
150 |
+
file_key = f"{session_id}-{repo_name}"
|
151 |
+
|
152 |
+
# Get query engine from session state
|
153 |
+
query_engine = st.session_state.file_cache.get(file_key)
|
154 |
+
|
155 |
+
if query_engine is None:
|
156 |
+
st.error("Please load a repository first!")
|
157 |
+
st.stop()
|
158 |
+
|
159 |
+
# Use the query engine to get the context for the query
|
160 |
+
response = query_engine.query(prompt)
|
161 |
+
|
162 |
+
# Handle streaming response
|
163 |
+
if hasattr(response, 'response_gen'):
|
164 |
+
for chunk in response.response_gen:
|
165 |
+
if isinstance(chunk, str): # Only process string chunks
|
166 |
+
full_response += chunk
|
167 |
+
message_placeholder.markdown(full_response + "▌")
|
168 |
+
else:
|
169 |
+
# Handle non-streaming response
|
170 |
+
full_response = str(response)
|
171 |
+
message_placeholder.markdown(full_response)
|
172 |
+
|
173 |
+
message_placeholder.markdown(full_response)
|
174 |
+
|
175 |
+
except Exception as e:
|
176 |
+
st.error(f"An error occurred while processing your query: {str(e)}")
|
177 |
+
full_response = "Sorry, I encountered an error while processing your request."
|
178 |
+
message_placeholder.markdown(full_response)
|
179 |
+
|
180 |
+
# Add assistant response to chat history
|
181 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|