Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,27 @@
|
|
1 |
import os
|
2 |
-
import sys
|
3 |
import gc
|
4 |
import tempfile
|
5 |
import uuid
|
6 |
import logging
|
7 |
-
import requests
|
8 |
-
import time
|
9 |
-
from typing import List, Any
|
10 |
|
11 |
import streamlit as st
|
12 |
from dotenv import load_dotenv
|
13 |
-
|
14 |
from gitingest import ingest
|
15 |
-
from llama_index
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
#
|
23 |
load_dotenv()
|
24 |
|
25 |
-
# Configure SamnaNova OpenAI-compatible client
|
26 |
-
SAMBA_API_KEY = os.getenv("SAMBANOVA_API_KEY")
|
27 |
-
SAMBA_BASE_URL = os.getenv("SAMBANOVA_BASE_URL", "https://api.sambanova.ai/v1")
|
28 |
-
|
29 |
-
# Nomic AI API Key
|
30 |
-
NOMIC_API_KEY = os.getenv("NOMIC_API_KEY")
|
31 |
-
|
32 |
-
if not SAMBA_API_KEY:
|
33 |
-
raise ValueError("Missing SAMBANOVA_API_KEY in environment")
|
34 |
-
|
35 |
-
if not NOMIC_API_KEY:
|
36 |
-
raise ValueError("Missing NOMIC_API_KEY in environment")
|
37 |
-
|
38 |
-
# Initialize SambaNova client
|
39 |
-
sambanova_client = openai.OpenAI(
|
40 |
-
api_key=SAMBA_API_KEY,
|
41 |
-
base_url=SAMBA_BASE_URL
|
42 |
-
)
|
43 |
-
|
44 |
# Configure logging
|
45 |
logging.basicConfig(level=logging.INFO)
|
46 |
logger = logging.getLogger(__name__)
|
@@ -49,97 +30,10 @@ logger = logging.getLogger(__name__)
|
|
49 |
MAX_REPO_SIZE = 100 * 1024 * 1024 # 100MB
|
50 |
SUPPORTED_REPO_TYPES = ['.py', '.md', '.ipynb', '.js', '.ts', '.json']
|
51 |
|
52 |
-
# ------------------ Exceptions ------------------
|
53 |
class GitHubRAGError(Exception):
|
54 |
"""Custom exception for GitHub RAG application errors"""
|
55 |
pass
|
56 |
|
57 |
-
# ------------------ Embedding Cache ------------------
|
58 |
-
embedding_cache = {}
|
59 |
-
|
60 |
-
# ------------------ Nomic AI Embedding Implementation ------------------
|
61 |
-
class NomicEmbedding(BaseEmbedding):
|
62 |
-
"""Custom embedding class for Nomic AI"""
|
63 |
-
def __init__(self, model_name="nomic-embed-text-v1.5", task_type="search_document"):
|
64 |
-
self.model_name = model_name
|
65 |
-
self.task_type = task_type
|
66 |
-
self.api_key = NOMIC_API_KEY
|
67 |
-
super().__init__()
|
68 |
-
|
69 |
-
def _get_query_embedding(self, query: str) -> List[float]:
|
70 |
-
"""Get embedding for a query string"""
|
71 |
-
return self._get_embedding(query)
|
72 |
-
|
73 |
-
def _get_text_embedding(self, text: str) -> List[float]:
|
74 |
-
"""Get embedding for a text string"""
|
75 |
-
return self._get_embedding(text)
|
76 |
-
|
77 |
-
def _get_embedding(self, text: str) -> List[float]:
|
78 |
-
"""Get embedding from Nomic AI"""
|
79 |
-
# Check if text is already in cache
|
80 |
-
if text in embedding_cache:
|
81 |
-
return embedding_cache[text]
|
82 |
-
|
83 |
-
try:
|
84 |
-
url = "https://api-atlas.nomic.ai/v1/embedding/text"
|
85 |
-
headers = {
|
86 |
-
"Authorization": f"Bearer {self.api_key}",
|
87 |
-
"Content-Type": "application/json",
|
88 |
-
"Accept": "application/json"
|
89 |
-
}
|
90 |
-
payload = {
|
91 |
-
"texts": [text],
|
92 |
-
"model": self.model_name,
|
93 |
-
"task_type": self.task_type
|
94 |
-
}
|
95 |
-
|
96 |
-
# Retry logic with exponential backoff
|
97 |
-
max_retries = 3
|
98 |
-
retry_delay = 1 # Start with 1 second delay
|
99 |
-
|
100 |
-
for retry in range(max_retries):
|
101 |
-
try:
|
102 |
-
response = requests.post(
|
103 |
-
url,
|
104 |
-
headers=headers,
|
105 |
-
json=payload,
|
106 |
-
timeout=30 # 30 seconds timeout
|
107 |
-
)
|
108 |
-
|
109 |
-
if response.status_code == 200:
|
110 |
-
embedding = response.json()["embeddings"][0]
|
111 |
-
# Cache the result
|
112 |
-
embedding_cache[text] = embedding
|
113 |
-
return embedding
|
114 |
-
else:
|
115 |
-
logger.error(f"Error from Nomic API: {response.status_code} - {response.text}")
|
116 |
-
if retry < max_retries - 1:
|
117 |
-
# Wait with exponential backoff before retry
|
118 |
-
time.sleep(retry_delay)
|
119 |
-
retry_delay *= 2 # Double the delay for next retry
|
120 |
-
else:
|
121 |
-
# Last retry failed
|
122 |
-
raise Exception(f"Failed to get embedding after {max_retries} attempts")
|
123 |
-
except requests.exceptions.RequestException as e:
|
124 |
-
logger.error(f"Request error (attempt {retry+1}/{max_retries}): {e}")
|
125 |
-
if retry < max_retries - 1:
|
126 |
-
time.sleep(retry_delay)
|
127 |
-
retry_delay *= 2
|
128 |
-
else:
|
129 |
-
raise
|
130 |
-
except Exception as e:
|
131 |
-
logger.error(f"Error connecting to Nomic API: {e}")
|
132 |
-
raise # Propagate the error without fallback
|
133 |
-
|
134 |
-
async def _aget_query_embedding(self, query: str) -> List[float]:
|
135 |
-
"""Async version of get_query_embedding"""
|
136 |
-
return self._get_query_embedding(query)
|
137 |
-
|
138 |
-
async def _aget_text_embedding(self, text: str) -> List[float]:
|
139 |
-
"""Async version of get_text_embedding"""
|
140 |
-
return self._get_text_embedding(text)
|
141 |
-
|
142 |
-
# ------------------ Utility Functions ------------------
|
143 |
|
144 |
def validate_github_url(url: str) -> bool:
|
145 |
return url.startswith(('https://github.com/', 'http://github.com/'))
|
@@ -147,7 +41,7 @@ def validate_github_url(url: str) -> bool:
|
|
147 |
|
148 |
def get_repo_name(url: str) -> str:
|
149 |
try:
|
150 |
-
return url.
|
151 |
except Exception as e:
|
152 |
raise GitHubRAGError(f"Invalid repository URL: {e}")
|
153 |
|
@@ -171,179 +65,131 @@ def process_with_gitingets(github_url: str) -> tuple:
|
|
171 |
return summary, tree, content
|
172 |
except Exception as e:
|
173 |
logger.error(f"Error processing repository: {e}")
|
174 |
-
raise GitHubRAGError(
|
175 |
-
|
176 |
-
|
177 |
-
def create_query_engine(
|
178 |
-
"""
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
node_parser = MarkdownNodeParser()
|
199 |
-
index = VectorStoreIndex.from_documents(
|
200 |
-
documents=docs,
|
201 |
-
transformations=[node_parser],
|
202 |
-
vector_store=vector_store,
|
203 |
-
show_progress=True
|
204 |
-
)
|
205 |
-
|
206 |
-
# Custom QA prompt template
|
207 |
-
qa_prompt = PromptTemplate(
|
208 |
-
template_str="""
|
209 |
-
You are an AI assistant specialized in analyzing GitHub repositories.
|
210 |
-
|
211 |
-
Repository structure:
|
212 |
-
{tree}
|
213 |
-
|
214 |
-
Context information:
|
215 |
-
{context_str}
|
216 |
-
|
217 |
-
Answer the following query about the repository. If unknown, say you don't have enough information.
|
218 |
-
|
219 |
-
Query: {query_str}
|
220 |
-
Answer:"""
|
221 |
-
)
|
222 |
-
|
223 |
-
# Configure query engine with streaming and template
|
224 |
-
query_engine = index.as_query_engine(streaming=True)
|
225 |
-
query_engine.update_prompts({
|
226 |
-
"response_synthesizer:text_qa_template": qa_prompt
|
227 |
-
})
|
228 |
-
|
229 |
-
# And then configure it within llama-index
|
230 |
-
llm = SambaNovaCloud(
|
231 |
model_name="QwQ-32B",
|
232 |
-
|
233 |
-
|
|
|
|
|
234 |
)
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
if "id" not in st.session_state:
|
245 |
st.session_state.id = uuid.uuid4()
|
246 |
-
st.session_state.
|
247 |
st.session_state.messages = []
|
248 |
|
249 |
session_id = st.session_state.id
|
250 |
|
251 |
-
# Sidebar inputs
|
252 |
with st.sidebar:
|
253 |
-
st.header("
|
254 |
-
github_url = st.text_input("
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
if github_url and load_repo:
|
260 |
-
try:
|
261 |
-
if not validate_github_url(github_url):
|
262 |
-
st.error("Please enter a valid GitHub repository URL")
|
263 |
-
st.stop()
|
264 |
-
|
265 |
-
repo_name = get_repo_name(github_url)
|
266 |
-
file_key = f"{session_id}-{repo_name}"
|
267 |
-
|
268 |
-
if file_key not in st.session_state.file_cache:
|
269 |
-
with st.spinner("Processing your repository..."):
|
270 |
-
with tempfile.TemporaryDirectory() as temp_dir:
|
271 |
-
summary, tree, content = process_with_gitingets(github_url)
|
272 |
-
# Write content for RAG
|
273 |
-
content_path = temp_dir
|
274 |
-
# Save full content as a doc
|
275 |
-
md_path = os.path.join(temp_dir, f"{repo_name}.md")
|
276 |
-
with open(md_path, "w", encoding="utf-8") as f:
|
277 |
-
f.write(content)
|
278 |
-
|
279 |
-
# Create query engine and cache
|
280 |
-
query_engine = create_query_engine(content_path, repo_name)
|
281 |
-
st.session_state.file_cache[file_key] = dict(
|
282 |
-
engine=query_engine,
|
283 |
-
tree=tree
|
284 |
-
)
|
285 |
-
st.success("Repository loaded successfully! Ready to chat.")
|
286 |
-
else:
|
287 |
-
st.info("Repository already loaded. Ready to chat!")
|
288 |
-
except GitHubRAGError as e:
|
289 |
-
st.error(str(e))
|
290 |
st.stop()
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
with col1:
|
295 |
-
st.header("Chat with
|
296 |
with col2:
|
297 |
-
st.button("Clear Chat
|
298 |
|
299 |
-
# Display chat
|
300 |
for msg in st.session_state.messages:
|
301 |
-
with st.chat_message(msg[
|
302 |
-
st.markdown(msg[
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
307 |
with st.chat_message("user"):
|
308 |
st.markdown(prompt)
|
309 |
-
|
|
|
|
|
|
|
|
|
310 |
with st.chat_message("assistant"):
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
tree_str = cache['tree']
|
319 |
-
# Generate RAG response (streamed chunks)
|
320 |
-
rag_response = query_engine.query(prompt)
|
321 |
-
context_str = rag_response.context_str if hasattr(rag_response, 'context_str') else ''
|
322 |
-
|
323 |
-
# Membuat pesan untuk model Sambanova
|
324 |
-
messages = [
|
325 |
-
{"role": "system", "content": "You are a knowledgeable assistant combining GitHub repository context with user queries."},
|
326 |
-
{"role": "user", "content": f"Struktur Repositori:\n{tree_str}\nKonteks:\n{context_str}\nPertanyaan: {prompt}"}
|
327 |
-
]
|
328 |
-
|
329 |
-
# Memanggil API Sambanova
|
330 |
-
try:
|
331 |
-
stream = sambanova_client.chat.completions.create(
|
332 |
-
model="QwQ-32B", # Ganti dengan model yang sesuai
|
333 |
-
messages=messages,
|
334 |
-
temperature=0.1,
|
335 |
-
top_p=0.1
|
336 |
-
)
|
337 |
-
|
338 |
-
full_resp = ""
|
339 |
-
for chunk in stream:
|
340 |
-
if chunk.choices[0].delta.content:
|
341 |
-
full_resp += chunk.choices[0].delta.content
|
342 |
-
st.write(full_resp + "▌")
|
343 |
-
st.write(full_resp)
|
344 |
-
st.session_state.messages.append({"role": "assistant", "content": full_resp})
|
345 |
-
|
346 |
-
except Exception as e:
|
347 |
-
logger.error(f"API Error: {str(e)}")
|
348 |
-
st.error(f"Error generating response: {str(e)}")
|
349 |
-
st.stop()
|
|
|
1 |
import os
|
|
|
2 |
import gc
|
3 |
import tempfile
|
4 |
import uuid
|
5 |
import logging
|
|
|
|
|
|
|
6 |
|
7 |
import streamlit as st
|
8 |
from dotenv import load_dotenv
|
9 |
+
|
10 |
from gitingest import ingest
|
11 |
+
from llama_index import (
|
12 |
+
SimpleDirectoryReader,
|
13 |
+
VectorStoreIndex,
|
14 |
+
PromptTemplate,
|
15 |
+
ServiceContext,
|
16 |
+
LLMPredictor,
|
17 |
+
)
|
18 |
+
from llama_index.node_parser import MarkdownNodeParser
|
19 |
+
from llama_index.embeddings import HuggingFaceEmbedding
|
20 |
+
from llama_index.llms import OpenAI
|
21 |
|
22 |
+
# Load environment
|
23 |
load_dotenv()
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Configure logging
|
26 |
logging.basicConfig(level=logging.INFO)
|
27 |
logger = logging.getLogger(__name__)
|
|
|
30 |
MAX_REPO_SIZE = 100 * 1024 * 1024 # 100MB
|
31 |
SUPPORTED_REPO_TYPES = ['.py', '.md', '.ipynb', '.js', '.ts', '.json']
|
32 |
|
|
|
33 |
class GitHubRAGError(Exception):
|
34 |
"""Custom exception for GitHub RAG application errors"""
|
35 |
pass
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def validate_github_url(url: str) -> bool:
|
39 |
return url.startswith(('https://github.com/', 'http://github.com/'))
|
|
|
41 |
|
42 |
def get_repo_name(url: str) -> str:
|
43 |
try:
|
44 |
+
return url.split('/')[-1].replace('.git', '')
|
45 |
except Exception as e:
|
46 |
raise GitHubRAGError(f"Invalid repository URL: {e}")
|
47 |
|
|
|
65 |
return summary, tree, content
|
66 |
except Exception as e:
|
67 |
logger.error(f"Error processing repository: {e}")
|
68 |
+
raise GitHubRAGError(str(e))
|
69 |
+
|
70 |
+
|
71 |
+
def create_query_engine(content_dir: str) -> Any:
|
72 |
+
"""
|
73 |
+
Build index with nomic embeddings and query via Sambanova LLM
|
74 |
+
"""
|
75 |
+
# Reader & parser
|
76 |
+
loader = SimpleDirectoryReader(input_dir=content_dir)
|
77 |
+
docs = loader.load_data()
|
78 |
+
node_parser = MarkdownNodeParser()
|
79 |
+
|
80 |
+
# Embedding model using Nomic Embed v2 MoE
|
81 |
+
embed_model = HuggingFaceEmbedding(
|
82 |
+
model_name="nomic-ai/nomic-embed-text-v2-moe",
|
83 |
+
embedding_device="cpu", # or 'cuda'
|
84 |
+
normalize_embeddings=True,
|
85 |
+
trust_remote_code=True,
|
86 |
+
)
|
87 |
+
|
88 |
+
# LLM predictor using Sambarova Cloud via OpenAI compatible API
|
89 |
+
llm_predictor = LLMPredictor(
|
90 |
+
llm=OpenAI(
|
91 |
+
api_key=os.environ.get("SAMBANOVA_API_KEY"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
model_name="QwQ-32B",
|
93 |
+
temperature=0.1,
|
94 |
+
top_p=0.1,
|
95 |
+
streaming=True,
|
96 |
+
api_base="https://api.sambanova.ai/v1",
|
97 |
)
|
98 |
+
)
|
99 |
+
|
100 |
+
# Service context
|
101 |
+
service_context = ServiceContext.from_defaults(
|
102 |
+
embed_model=embed_model,
|
103 |
+
llm_predictor=llm_predictor,
|
104 |
+
prompt_helper=None,
|
105 |
+
)
|
106 |
+
|
107 |
+
# Build index
|
108 |
+
index = VectorStoreIndex.from_documents(
|
109 |
+
documents=docs,
|
110 |
+
service_context=service_context,
|
111 |
+
transformations=[node_parser],
|
112 |
+
show_progress=True,
|
113 |
+
)
|
114 |
+
|
115 |
+
# Custom QA prompt
|
116 |
+
qa_template = PromptTemplate(
|
117 |
+
"You are an AI assistant specialized in analyzing GitHub repositories.\n\n"
|
118 |
+
"Repository files and structure:\n{tree}\n---\n"
|
119 |
+
"Context:\n{context_str}\n---\n"
|
120 |
+
"Question: {query_str}\nAnswer:"
|
121 |
+
)
|
122 |
+
service_context.prompt_helper.set_default_template(
|
123 |
+
qa_template,
|
124 |
+
key="response_synthesizer:text_qa_template"
|
125 |
+
)
|
126 |
+
|
127 |
+
# Create query engine
|
128 |
+
return index.as_query_engine(streaming=True, service_context=service_context)
|
129 |
+
|
130 |
+
# Streamlit App
|
131 |
if "id" not in st.session_state:
|
132 |
st.session_state.id = uuid.uuid4()
|
133 |
+
st.session_state.cache = {}
|
134 |
st.session_state.messages = []
|
135 |
|
136 |
session_id = st.session_state.id
|
137 |
|
|
|
138 |
with st.sidebar:
|
139 |
+
st.header("GitHub RAG with Sambanova & Nomic Embed")
|
140 |
+
github_url = st.text_input("GitHub Repo URL", help="e.g. https://github.com/user/repo")
|
141 |
+
load_btn = st.button("Load Repository")
|
142 |
+
if github_url and load_btn:
|
143 |
+
if not validate_github_url(github_url):
|
144 |
+
st.error("Invalid GitHub URL")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
st.stop()
|
146 |
+
repo_name = get_repo_name(github_url)
|
147 |
+
key = f"{session_id}-{repo_name}"
|
148 |
+
if key not in st.session_state.cache:
|
149 |
+
with st.spinner("Processing repository..."):
|
150 |
+
try:
|
151 |
+
summary, tree, content = process_with_gitingets(github_url)
|
152 |
+
with tempfile.TemporaryDirectory() as td:
|
153 |
+
# Save all files to directory
|
154 |
+
content_path = os.path.join(td, repo_name)
|
155 |
+
os.makedirs(content_path, exist_ok=True)
|
156 |
+
with open(os.path.join(content_path, f"{repo_name}.md"), "w") as f:
|
157 |
+
f.write(content)
|
158 |
+
# Build query engine
|
159 |
+
qe = create_query_engine(content_path)
|
160 |
+
st.session_state.cache[key] = (qe, tree)
|
161 |
+
st.success("Repository loaded!")
|
162 |
+
except GitHubRAGError as e:
|
163 |
+
st.error(str(e))
|
164 |
+
st.stop()
|
165 |
+
else:
|
166 |
+
st.info("Repository already loaded.")
|
167 |
+
|
168 |
+
col1, col2 = st.columns([6,1])
|
169 |
with col1:
|
170 |
+
st.header("Chat with your Repo")
|
171 |
with col2:
|
172 |
+
st.button("Clear Chat", on_click=reset_chat)
|
173 |
|
174 |
+
# Display chat
|
175 |
for msg in st.session_state.messages:
|
176 |
+
with st.chat_message(msg['role']):
|
177 |
+
st.markdown(msg['content'])
|
178 |
|
179 |
+
if prompt := st.chat_input("Ask a question about the repository..."):
|
180 |
+
st.session_state.messages.append({"role":"user","content":prompt})
|
|
|
181 |
with st.chat_message("user"):
|
182 |
st.markdown(prompt)
|
183 |
+
key = f"{session_id}-{get_repo_name(github_url)}"
|
184 |
+
if key not in st.session_state.cache:
|
185 |
+
st.error("Load a repository first.")
|
186 |
+
st.stop()
|
187 |
+
qe, tree = st.session_state.cache[key]
|
188 |
with st.chat_message("assistant"):
|
189 |
+
placeholder = st.empty()
|
190 |
+
answer = ""
|
191 |
+
for chunk in qe.query(prompt).response_gen:
|
192 |
+
answer += chunk
|
193 |
+
placeholder.markdown(answer + "▌")
|
194 |
+
placeholder.markdown(answer)
|
195 |
+
st.session_state.messages.append({"role":"assistant","content":answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|